Commit Graph

428 Commits

Author SHA1 Message Date
Jason A. Donenfeld
534d2eaf19 random: schedule mix_interrupt_randomness() less often
It used to be that mix_interrupt_randomness() would credit 1 bit each
time it ran, and so add_interrupt_randomness() would schedule mix() to
run every 64 interrupts, a fairly arbitrary number, but nonetheless
considered to be a decent enough conservative estimate.

Since e3e33fc2ea ("random: do not use input pool from hard IRQs"),
mix() is now able to credit multiple bits, depending on the number of
calls to add(). This was done for reasons separate from this commit, but
it has the nice side effect of enabling this patch to schedule mix()
less often.

Currently the rules are:
a) Credit 1 bit for every 64 calls to add().
b) Schedule mix() once a second that add() is called.
c) Schedule mix() once every 64 calls to add().

Rules (a) and (c) no longer need to be coupled. It's still important to
have _some_ value in (c), so that we don't "over-saturate" the fast
pool, but the once per second we get from rule (b) is a plenty enough
baseline. So, by increasing the 64 in rule (c) to something larger, we
avoid calling queue_work_on() as frequently during irq storms.

This commit changes that 64 in rule (c) to be 1024, which means we
schedule mix() 16 times less often. And it does *not* need to change the
64 in rule (a).

Fixes: 58340f8e95 ("random: defer fast pool mixing to worker")
Cc: stable@vger.kernel.org
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-06-19 23:50:45 +02:00
Jason A. Donenfeld
e052a478a7 random: remove rng_has_arch_random()
With arch randomness being used by every distro and enabled in
defconfigs, the distinction between rng_has_arch_random() and
rng_is_initialized() is now rather small. In fact, the places where they
differ are now places where paranoid users and system builders really
don't want arch randomness to be used, in which case we should respect
that choice, or places where arch randomness is known to be broken, in
which case that choice is all the more important. So this commit just
removes the function and its one user.

Reviewed-by: Petr Mladek <pmladek@suse.com> # for vsprintf.c
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-06-10 11:29:48 +02:00
Jason A. Donenfeld
60e5b2886b random: do not use jump labels before they are initialized
Stephen reported that a static key warning splat appears during early
boot on systems that credit randomness from device trees that contain an
"rng-seed" property, because because setup_machine_fdt() is called
before jump_label_init() during setup_arch():

 static_key_enable_cpuslocked(): static key '0xffffffe51c6fcfc0' used before call to jump_label_init()
 WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xb0/0xb8
 Modules linked in:
 CPU: 0 PID: 0 Comm: swapper Not tainted 5.18.0+ #224 44b43e377bfc84bc99bb5ab885ff694984ee09ff
 pstate: 600001c9 (nZCv dAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : static_key_enable_cpuslocked+0xb0/0xb8
 lr : static_key_enable_cpuslocked+0xb0/0xb8
 sp : ffffffe51c393cf0
 x29: ffffffe51c393cf0 x28: 000000008185054c x27: 00000000f1042f10
 x26: 0000000000000000 x25: 00000000f10302b2 x24: 0000002513200000
 x23: 0000002513200000 x22: ffffffe51c1c9000 x21: fffffffdfdc00000
 x20: ffffffe51c2f0831 x19: ffffffe51c6fcfc0 x18: 00000000ffff1020
 x17: 00000000e1e2ac90 x16: 00000000000000e0 x15: ffffffe51b710708
 x14: 0000000000000066 x13: 0000000000000018 x12: 0000000000000000
 x11: 0000000000000000 x10: 00000000ffffffff x9 : 0000000000000000
 x8 : 0000000000000000 x7 : 61632065726f6665 x6 : 6220646573752027
 x5 : ffffffe51c641d25 x4 : ffffffe51c13142c x3 : ffff0a00ffffff05
 x2 : 40000000ffffe003 x1 : 00000000000001c0 x0 : 0000000000000065
 Call trace:
  static_key_enable_cpuslocked+0xb0/0xb8
  static_key_enable+0x2c/0x40
  crng_set_ready+0x24/0x30
  execute_in_process_context+0x80/0x90
  _credit_init_bits+0x100/0x154
  add_bootloader_randomness+0x64/0x78
  early_init_dt_scan_chosen+0x140/0x184
  early_init_dt_scan_nodes+0x28/0x4c
  early_init_dt_scan+0x40/0x44
  setup_machine_fdt+0x7c/0x120
  setup_arch+0x74/0x1d8
  start_kernel+0x84/0x44c
  __primary_switched+0xc0/0xc8
 ---[ end trace 0000000000000000 ]---
 random: crng init done
 Machine model: Google Lazor (rev1 - 2) with LTE

A trivial fix went in to address this on arm64, 73e2d827a5 ("arm64:
Initialize jump labels before setup_machine_fdt()"). I wrote patches as
well for arm32 and risc-v. But still patches are needed on xtensa,
powerpc, arc, and mips. So that's 7 platforms where things aren't quite
right. This sort of points to larger issues that might need a larger
solution.

Instead, this commit just defers setting the static branch until later
in the boot process. random_init() is called after jump_label_init() has
been called, and so is always a safe place from which to adjust the
static branch.

Fixes: f5bda35fba ("random: use static branch for crng_ready()")
Reported-by: Stephen Boyd <swboyd@chromium.org>
Reported-by: Phil Elwell <phil@raspberrypi.com>
Tested-by: Phil Elwell <phil@raspberrypi.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-06-10 11:29:48 +02:00
Jason A. Donenfeld
77fc95f8c0 random: account for arch randomness in bits
Rather than accounting in bytes and multiplying (shifting), we can just
account in bits and avoid the shift. The main motivation for this is
there are other patches in flux that expand this code a bit, and
avoiding the duplication of "* 8" everywhere makes things a bit clearer.

Cc: stable@vger.kernel.org
Fixes: 12e45a2a63 ("random: credit architectural init the exact amount")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-06-10 11:29:42 +02:00
Jason A. Donenfeld
39e0f991a6 random: mark bootloader randomness code as __init
add_bootloader_randomness() and the variables it touches are only used
during __init and not after, so mark these as __init. At the same time,
unexport this, since it's only called by other __init code that's
built-in.

Cc: stable@vger.kernel.org
Fixes: 428826f535 ("fdt: add support for rng-seed")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-06-10 11:28:16 +02:00
Jason A. Donenfeld
9b29b6b203 random: avoid checking crng_ready() twice in random_init()
The current flow expands to:

    if (crng_ready())
       ...
    else if (...)
        if (!crng_ready())
            ...

The second crng_ready() call is redundant, but can't so easily be
optimized out by the compiler.

This commit simplifies that to:

    if (crng_ready()
        ...
    else if (...)
        ...

Fixes: 560181c27b ("random: move initialization functions out of hot pages")
Cc: stable@vger.kernel.org
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-06-10 11:09:36 +02:00
Jason A. Donenfeld
1ce6c8d68f random: check for signals after page of pool writes
get_random_bytes_user() checks for signals after producing a PAGE_SIZE
worth of output, just like /dev/zero does. write_pool() is doing
basically the same work (actually, slightly more expensive), and so
should stop to check for signals in the same way. Let's also name it
write_pool_user() to match get_random_bytes_user(), so this won't be
misused in the future.

Before this patch, massive writes to /dev/urandom would tie up the
process for an extremely long time and make it unterminatable. After, it
can be successfully interrupted. The following test program can be used
to see this works as intended:

  #include <unistd.h>
  #include <fcntl.h>
  #include <signal.h>
  #include <stdio.h>

  static unsigned char x[~0U];

  static void handle(int) { }

  int main(int argc, char *argv[])
  {
    pid_t pid = getpid(), child;
    int fd;
    signal(SIGUSR1, handle);
    if (!(child = fork())) {
      for (;;)
        kill(pid, SIGUSR1);
    }
    fd = open("/dev/urandom", O_WRONLY);
    pause();
    printf("interrupted after writing %zd bytes\n", write(fd, x, sizeof(x)));
    close(fd);
    kill(child, SIGTERM);
    return 0;
  }

Result before: "interrupted after writing 2147479552 bytes"
Result after: "interrupted after writing 4096 bytes"

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-22 22:34:31 +02:00
Jens Axboe
79025e727a random: wire up fops->splice_{read,write}_iter()
Now that random/urandom is using {read,write}_iter, we can wire it up to
using the generic splice handlers.

Fixes: 36e2c7421f ("fs: don't allow splice read/write without explicit ops")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: added the splice_write path. Note that sendfile() and such still
 does not work for read, though it does for write, because of a file
 type restriction in splice_direct_to_actor(), which I'll address
 separately.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-20 18:26:48 +02:00
Jens Axboe
22b0a222af random: convert to using fops->write_iter()
Now that the read side has been converted to fix a regression with
splice, convert the write side as well to have some symmetry in the
interface used (and help deprecate ->write()).

Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: cleaned up random_ioctl a bit, require full writes in
 RNDADDENTROPY since it's crediting entropy, simplify control flow of
 write_pool(), and incorporate suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-20 18:26:48 +02:00
Jens Axboe
1b388e7765 random: convert to using fops->read_iter()
This is a pre-requisite to wiring up splice() again for the random
and urandom drivers. It also allows us to remove the INT_MAX check in
getrandom(), because import_single_range() applies capping internally.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: rewrote get_random_bytes_user() to simplify and also incorporate
 additional suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-20 18:26:48 +02:00
Jason A. Donenfeld
3092adcef3 random: unify batched entropy implementations
There are currently two separate batched entropy implementations, for
u32 and u64, with nearly identical code, with the goal of avoiding
unaligned memory accesses and letting the buffers be used more
efficiently. Having to maintain these two functions independently is a
bit of a hassle though, considering that they always need to be kept in
sync.

This commit factors them out into a type-generic macro, so that the
expansion produces the same code as before, such that diffing the
assembly shows no differences. This will also make it easier in the
future to add u16 and u8 batches.

This was initially tested using an always_inline function and letting
gcc constant fold the type size in, but the code gen was less efficient,
and in general it was more verbose and harder to follow. So this patch
goes with the boring macro solution, similar to what's already done for
the _wait functions in random.h.

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-19 16:54:15 +02:00
Jason A. Donenfeld
5ad7dd882e random: move randomize_page() into mm where it belongs
randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.

So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.

This commit contains no actual code changes.

Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-19 16:54:15 +02:00
Jason A. Donenfeld
6701de6c51 random: remove mostly unused async readiness notifier
The register_random_ready_notifier() notifier is somewhat complicated,
and was already recently rewritten to use notifier blocks. It is only
used now by one consumer in the kernel, vsprintf.c, for which the async
mechanism is really overly complex for what it actually needs. This
commit removes register_random_ready_notifier() and unregister_random_
ready_notifier(), because it just adds complication with little utility,
and changes vsprintf.c to just check on `!rng_is_initialized() &&
!rng_has_arch_random()`, which will eventually be true. Performance-
wise, that code was already using a static branch, so there's basically
no overhead at all to this change.

Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Petr Mladek <pmladek@suse.com> # for vsprintf.c
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-19 16:54:15 +02:00
Jason A. Donenfeld
248561ad25 random: remove get_random_bytes_arch() and add rng_has_arch_random()
The RNG incorporates RDRAND into its state at boot and every time it
reseeds, so there's no reason for callers to use it directly. The
hashing that the RNG does on it is preferable to using the bytes raw.

The only current use case of get_random_bytes_arch() is vsprintf's
siphash key for pointer hashing, which uses it to initialize the pointer
secret earlier than usual if RDRAND is available. In order to replace
this narrow use case, just expose whether RDRAND is mixed into the RNG,
with a new function called rng_has_arch_random(). With that taken care
of, there are no users of get_random_bytes_arch() left, so it can be
removed.

Later, if trust_cpu gets turned on by default (as most distros are
doing), this one use of rng_has_arch_random() can probably go away as
well.

Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Petr Mladek <pmladek@suse.com> # for vsprintf.c
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-19 16:54:15 +02:00
Jason A. Donenfeld
560181c27b random: move initialization functions out of hot pages
Much of random.c is devoted to initializing the rng and accounting for
when a sufficient amount of entropy has been added. In a perfect world,
this would all happen during init, and so we could mark these functions
as __init. But in reality, this isn't the case: sometimes the rng only
finishes initializing some seconds after system init is finished.

For this reason, at the moment, a whole host of functions that are only
used relatively close to system init and then never again are intermixed
with functions that are used in hot code all the time. This creates more
cache misses than necessary.

In order to pack the hot code closer together, this commit moves the
initialization functions that can't be marked as __init into
.text.unlikely by way of the __cold attribute.

Of particular note is moving credit_init_bits() into a macro wrapper
that inlines the crng_ready() static branch check. This avoids a
function call to a nop+ret, and most notably prevents extra entropy
arithmetic from being computed in mix_interrupt_randomness().

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-19 16:54:15 +02:00
Jason A. Donenfeld
a19402634c random: make consistent use of buf and len
The current code was a mix of "nbytes", "count", "size", "buffer", "in",
and so forth. Instead, let's clean this up by naming input parameters
"buf" (or "ubuf") and "len", so that you always understand that you're
reading this variety of function argument.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-19 16:54:15 +02:00
Jason A. Donenfeld
f5bda35fba random: use static branch for crng_ready()
Since crng_ready() is only false briefly during initialization and then
forever after becomes true, we don't need to evaluate it after, making
it a prime candidate for a static branch.

One complication, however, is that it changes state in a particular call
to credit_init_bits(), which might be made from atomic context, which
means we must kick off a workqueue to change the static key. Further
complicating things, credit_init_bits() may be called sufficiently early
on in system initialization such that system_wq is NULL.

Fortunately, there exists the nice function execute_in_process_context(),
which will immediately execute the function if !in_interrupt(), and
otherwise defer it to a workqueue. During early init, before workqueues
are available, in_interrupt() is always false, because interrupts
haven't even been enabled yet, which means the function in that case
executes immediately. Later on, after workqueues are available,
in_interrupt() might be true, but in that case, the work is queued in
system_wq and all goes well.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-19 16:54:10 +02:00
Jason A. Donenfeld
12e45a2a63 random: credit architectural init the exact amount
RDRAND and RDSEED can fail sometimes, which is fine. We currently
initialize the RNG with 512 bits of RDRAND/RDSEED. We only need 256 bits
of those to succeed in order to initialize the RNG. Instead of the
current "all or nothing" approach, actually credit these contributions
the amount that is actually contributed.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:53 +02:00
Jason A. Donenfeld
2f14062bb1 random: handle latent entropy and command line from random_init()
Currently, start_kernel() adds latent entropy and the command line to
the entropy bool *after* the RNG has been initialized, deferring when
it's actually used by things like stack canaries until the next time
the pool is seeded. This surely is not intended.

Rather than splitting up which entropy gets added where and when between
start_kernel() and random_init(), just do everything in random_init(),
which should eliminate these kinds of bugs in the future.

While we're at it, rename the awkwardly titled "rand_initialize()" to
the more standard "random_init()" nomenclature.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:53 +02:00
Jason A. Donenfeld
8a5b8a4a4c random: use proper jiffies comparison macro
This expands to exactly the same code that it replaces, but makes things
consistent by using the same macro for jiffy comparisons throughout.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:53 +02:00
Jason A. Donenfeld
cc1e127bfa random: remove ratelimiting for in-kernel unseeded randomness
The CONFIG_WARN_ALL_UNSEEDED_RANDOM debug option controls whether the
kernel warns about all unseeded randomness or just the first instance.
There's some complicated rate limiting and comparison to the previous
caller, such that even with CONFIG_WARN_ALL_UNSEEDED_RANDOM enabled,
developers still don't see all the messages or even an accurate count of
how many were missed. This is the result of basically parallel
mechanisms aimed at accomplishing more or less the same thing, added at
different points in random.c history, which sort of compete with the
first-instance-only limiting we have now.

It turns out, however, that nobody cares about the first unseeded
randomness instance of in-kernel users. The same first user has been
there for ages now, and nobody is doing anything about it. It isn't even
clear that anybody _can_ do anything about it. Most places that can do
something about it have switched over to using get_random_bytes_wait()
or wait_for_random_bytes(), which is the right thing to do, but there is
still much code that needs randomness sometimes during init, and as a
geeneral rule, if you're not using one of the _wait functions or the
readiness notifier callback, you're bound to be doing it wrong just
based on that fact alone.

So warning about this same first user that can't easily change is simply
not an effective mechanism for anything at all. Users can't do anything
about it, as the Kconfig text points out -- the problem isn't in
userspace code -- and kernel developers don't or more often can't react
to it.

Instead, show the warning for all instances when CONFIG_WARN_ALL_UNSEEDED_RANDOM
is set, so that developers can debug things need be, or if it isn't set,
don't show a warning at all.

At the same time, CONFIG_WARN_ALL_UNSEEDED_RANDOM now implies setting
random.ratelimit_disable=1 on by default, since if you care about one
you probably care about the other too. And we can clean up usage around
the related urandom_warning ratelimiter as well (whose behavior isn't
changing), so that it properly counts missed messages after the 10
message threshold is reached.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:53 +02:00
Jason A. Donenfeld
68c9c8b192 random: move initialization out of reseeding hot path
Initialization happens once -- by way of credit_init_bits() -- and then
it never happens again. Therefore, it doesn't need to be in
crng_reseed(), which is a hot path that is called multiple times. It
also doesn't make sense to have there, as initialization activity is
better associated with initialization routines.

After the prior commit, crng_reseed() now won't be called by multiple
concurrent callers, which means that we can safely move the
"finialize_init" logic into crng_init_bits() unconditionally.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:53 +02:00
Jason A. Donenfeld
fed7ef0616 random: avoid initializing twice in credit race
Since all changes of crng_init now go through credit_init_bits(), we can
fix a long standing race in which two concurrent callers of
credit_init_bits() have the new bit count >= some threshold, but are
doing so with crng_init as a lower threshold, checked outside of a lock,
resulting in crng_reseed() or similar being called twice.

In order to fix this, we can use the original cmpxchg value of the bit
count, and only change crng_init when the bit count transitions from
below a threshold to meeting the threshold.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:53 +02:00
Jason A. Donenfeld
e3d2c5e79a random: use symbolic constants for crng_init states
crng_init represents a state machine, with three states, and various
rules for transitions. For the longest time, we've been managing these
with "0", "1", and "2", and expecting people to figure it out. To make
the code more obvious, replace these with proper enum values
representing the transition, and then redocument what each of these
states mean.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:52 +02:00
Jason A. Donenfeld
e73aaae2fa siphash: use one source of truth for siphash permutations
The SipHash family of permutations is currently used in three places:

- siphash.c itself, used in the ordinary way it was intended.
- random32.c, in a construction from an anonymous contributor.
- random.c, as part of its fast_mix function.

Each one of these places reinvents the wheel with the same C code, same
rotation constants, and same symmetry-breaking constants.

This commit tidies things up a bit by placing macros for the
permutations and constants into siphash.h, where each of the three .c
users can access them. It also leaves a note dissuading more users of
them from emerging.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:52 +02:00
Jason A. Donenfeld
791332b3cb random: help compiler out with fast_mix() by using simpler arguments
Now that fast_mix() has more than one caller, gcc no longer inlines it.
That's fine. But it also doesn't handle the compound literal argument we
pass it very efficiently, nor does it handle the loop as well as it
could. So just expand the code to spell out this function so that it
generates the same code as it did before. Performance-wise, this now
behaves as it did before the last commit. The difference in actual code
size on x86 is 45 bytes, which is less than a cache line.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:52 +02:00
Jason A. Donenfeld
e3e33fc2ea random: do not use input pool from hard IRQs
Years ago, a separate fast pool was added for interrupts, so that the
cost associated with taking the input pool spinlocks and mixing into it
would be avoided in places where latency is critical. However, one
oversight was that add_input_randomness() and add_disk_randomness()
still sometimes are called directly from the interrupt handler, rather
than being deferred to a thread. This means that some unlucky interrupts
will be caught doing a blake2s_compress() call and potentially spinning
on input_pool.lock, which can also be taken by unprivileged users by
writing into /dev/urandom.

In order to fix this, add_timer_randomness() now checks whether it is
being called from a hard IRQ and if so, just mixes into the per-cpu IRQ
fast pool using fast_mix(), which is much faster and can be done
lock-free. A nice consequence of this, as well, is that it means hard
IRQ context FPU support is likely no longer useful.

The entropy estimation algorithm used by add_timer_randomness() is also
somewhat different than the one used for add_interrupt_randomness(). The
former looks at deltas of deltas of deltas, while the latter just waits
for 64 interrupts for one bit or for one second since the last bit. In
order to bridge these, and since add_interrupt_randomness() runs after
an add_timer_randomness() that's called from hard IRQ, we add to the
fast pool credit the related amount, and then subtract one to account
for add_interrupt_randomness()'s contribution.

A downside of this, however, is that the num argument is potentially
attacker controlled, which puts a bit more pressure on the fast_mix()
sponge to do more than it's really intended to do. As a mitigating
factor, the first 96 bits of input aren't attacker controlled (a cycle
counter followed by zeros), which means it's essentially two rounds of
siphash rather than one, which is somewhat better. It's also not that
much different from add_interrupt_randomness()'s use of the irq stack
instruction pointer register.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Filipe Manana <fdmanana@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-18 15:53:52 +02:00
Jason A. Donenfeld
a4b5c26b79 random: order timer entropy functions below interrupt functions
There are no code changes here; this is just a reordering of functions,
so that in subsequent commits, the timer entropy functions can call into
the interrupt ones.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-16 01:27:24 +02:00
Jason A. Donenfeld
e85c0fc1d9 random: do not pretend to handle premature next security model
Per the thread linked below, "premature next" is not considered to be a
realistic threat model, and leads to more serious security problems.

"Premature next" is the scenario in which:

- Attacker compromises the current state of a fully initialized RNG via
  some kind of infoleak.
- New bits of entropy are added directly to the key used to generate the
  /dev/urandom stream, without any buffering or pooling.
- Attacker then, somehow having read access to /dev/urandom, samples RNG
  output and brute forces the individual new bits that were added.
- Result: the RNG never "recovers" from the initial compromise, a
  so-called violation of what academics term "post-compromise security".

The usual solutions to this involve some form of delaying when entropy
gets mixed into the crng. With Fortuna, this involves multiple input
buckets. With what the Linux RNG was trying to do prior, this involves
entropy estimation.

However, by delaying when entropy gets mixed in, it also means that RNG
compromises are extremely dangerous during the window of time before
the RNG has gathered enough entropy, during which time nonces may become
predictable (or repeated), ephemeral keys may not be secret, and so
forth. Moreover, it's unclear how realistic "premature next" is from an
attack perspective, if these attacks even make sense in practice.

Put together -- and discussed in more detail in the thread below --
these constitute grounds for just doing away with the current code that
pretends to handle premature next. I say "pretends" because it wasn't
doing an especially great job at it either; should we change our mind
about this direction, we would probably implement Fortuna to "fix" the
"problem", in which case, removing the pretend solution still makes
sense.

This also reduces the crng reseed period from 5 minutes down to 1
minute. The rationale from the thread might lead us toward reducing that
even further in the future (or even eliminating it), but that remains a
topic of a future commit.

At a high level, this patch changes semantics from:

    Before: Seed for the first time after 256 "bits" of estimated
    entropy have been accumulated since the system booted. Thereafter,
    reseed once every five minutes, but only if 256 new "bits" have been
    accumulated since the last reseeding.

    After: Seed for the first time after 256 "bits" of estimated entropy
    have been accumulated since the system booted. Thereafter, reseed
    once every minute.

Most of this patch is renaming and removing: POOL_MIN_BITS becomes
POOL_INIT_BITS, credit_entropy_bits() becomes credit_init_bits(),
crng_reseed() loses its "force" parameter since it's now always true,
the drain_entropy() function no longer has any use so it's removed,
entropy estimation is skipped if we've already init'd, the various
notifiers for "low on entropy" are now only active prior to init, and
finally, some documentation comments are cleaned up here and there.

Link: https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Nadia Heninger <nadiah@cs.ucsd.edu>
Cc: Tom Ristenpart <ristenpart@cornell.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-15 12:11:58 +02:00
Jason A. Donenfeld
5c3b747ef5 random: use first 128 bits of input as fast init
Before, the first 64 bytes of input, regardless of how entropic it was,
would be used to mutate the crng base key directly, and none of those
bytes would be credited as having entropy. Then 256 bits of credited
input would be accumulated, and only then would the rng transition from
the earlier "fast init" phase into being actually initialized.

The thinking was that by mixing and matching fast init and real init, an
attacker who compromised the fast init state, considered easy to do
given how little entropy might be in those first 64 bytes, would then be
able to bruteforce bits from the actual initialization. By keeping these
separate, bruteforcing became impossible.

However, by not crediting potentially creditable bits from those first 64
bytes of input, we delay initialization, and actually make the problem
worse, because it means the user is drawing worse random numbers for a
longer period of time.

Instead, we can take the first 128 bits as fast init, and allow them to
be credited, and then hold off on the next 128 bits until they've
accumulated. This is still a wide enough margin to prevent bruteforcing
the rng state, while still initializing much faster.

Then, rather than trying to piecemeal inject into the base crng key at
various points, instead just extract from the pool when we need it, for
the crng_init==0 phase. Performance may even be better for the various
inputs here, since there are likely more calls to mix_pool_bytes() then
there are to get_random_bytes() during this phase of system execution.

Since the preinit injection code is gone, bootloader randomness can then
do something significantly more straight forward, removing the weird
system_wq hack in hwgenerator randomness.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-13 23:59:23 +02:00
Jason A. Donenfeld
cbe89e5a37 random: do not use batches when !crng_ready()
It's too hard to keep the batches synchronized, and pointless anyway,
since in !crng_ready(), we're updating the base_crng key really often,
where batching only hurts. So instead, if the crng isn't ready, just
call into get_random_bytes(). At this stage nothing is performance
critical anyhow.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-13 23:59:23 +02:00
Jason A. Donenfeld
b7b67d1391 random: mix in timestamps and reseed on system restore
Since the RNG loses freshness with system suspend/hibernation, when we
resume, immediately reseed using whatever data we can, which for this
particular case is the various timestamps regarding system suspend time,
in addition to more generally the RDSEED/RDRAND/RDTSC values that happen
whenever the crng reseeds.

On systems that suspend and resume automatically all the time -- such as
Android -- we skip the reseeding on suspend resumption, since that could
wind up being far too busy. This is the same trade-off made in
WireGuard.

In addition to reseeding upon resumption always mix into the pool these
various stamps on every power notification event.

Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-13 23:59:23 +02:00
Jason A. Donenfeld
78c768e619 random: vary jitter iterations based on cycle counter speed
Currently, we do the jitter dance if two consecutive reads to the cycle
counter return different values. If they do, then we consider the cycle
counter to be fast enough that one trip through the scheduler will yield
one "bit" of credited entropy. If those two reads return the same value,
then we assume the cycle counter is too slow to show meaningful
differences.

This methodology is flawed for a variety of reasons, one of which Eric
posted a patch to fix in [1]. The issue that patch solves is that on a
system with a slow counter, you might be [un]lucky and read the counter
_just_ before it changes, so that the second cycle counter you read
differs from the first, even though there's usually quite a large period
of time in between the two. For example:

| real time | cycle counter |
| --------- | ------------- |
| 3         | 5             |
| 4         | 5             |
| 5         | 5             |
| 6         | 5             |
| 7         | 5             | <--- a
| 8         | 6             | <--- b
| 9         | 6             | <--- c

If we read the counter at (a) and compare it to (b), we might be fooled
into thinking that it's a fast counter, when in reality it is not. The
solution in [1] is to also compare counter (b) to counter (c), on the
theory that if the counter is _actually_ slow, and (a)!=(b), then
certainly (b)==(c).

This helps solve this particular issue, in one sense, but in another
sense, it mostly functions to disallow jitter entropy on these systems,
rather than simply taking more samples in that case.

Instead, this patch takes a different approach. Right now we assume that
a difference in one set of consecutive samples means one "bit" of
credited entropy per scheduler trip. We can extend this so that a
difference in two sets of consecutive samples means one "bit" of
credited entropy per /two/ scheduler trips, and three for three, and
four for four. In other words, we can increase the amount of jitter
"work" we require for each "bit", depending on how slow the cycle
counter is.

So this patch takes whole bunch of samples, sees how many of them are
different, and divides to find the amount of work required per "bit",
and also requires that at least some minimum of them are different in
order to attempt any jitter entropy.

Note that this approach is still far from perfect. It's not a real
statistical estimate on how much these samples vary; it's not a
real-time analysis of the relevant input data. That remains a project
for another time. However, it makes the same (partly flawed) assumptions
as the code that's there now, so it's probably not worse than the status
quo, and it handles the issue Eric mentioned in [1]. But, again, it's
probably a far cry from whatever a really robust version of this would
be.

[1] https://lore.kernel.org/lkml/20220421233152.58522-1-ebiggers@kernel.org/
    https://lore.kernel.org/lkml/20220421192939.250680-1-ebiggers@kernel.org/

Cc: Eric Biggers <ebiggers@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-13 23:59:23 +02:00
Jason A. Donenfeld
4b758eda85 random: insist on random_get_entropy() existing in order to simplify
All platforms are now guaranteed to provide some value for
random_get_entropy(). In case some bug leads to this not being so, we
print a warning, because that indicates that something is really very
wrong (and likely other things are impacted too). This should never be
hit, but it's a good and cheap way of finding out if something ever is
problematic.

Since we now have viable fallback code for random_get_entropy() on all
platforms, which is, in the worst case, not worse than jiffies, we can
count on getting the best possible value out of it. That means there's
no longer a use for using jiffies as entropy input. It also means we no
longer have a reason for doing the round-robin register flow in the IRQ
handler, which was always of fairly dubious value.

Instead we can greatly simplify the IRQ handler inputs and also unify
the construction between 64-bits and 32-bits. We now collect the cycle
counter and the return address, since those are the two things that
matter. Because the return address and the irq number are likely
related, to the extent we mix in the irq number, we can just xor it into
the top unchanging bytes of the return address, rather than the bottom
changing bytes of the cycle counter as before. Then, we can do a fixed 2
rounds of SipHash/HSipHash. Finally, we use the same construction of
hashing only half of the [H]SipHash state on 32-bit and 64-bit. We're
not actually discarding any entropy, since that entropy is carried
through until the next time. And more importantly, it lets us do the
same sponge-like construction everywhere.

Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-05-13 23:59:23 +02:00
Jason A. Donenfeld
8717627d6a random: document crng_fast_key_erasure() destination possibility
This reverts 35a33ff380 ("random: use memmove instead of memcpy for
remaining 32 bytes"), which was made on a totally bogus basis. The thing
it was worried about overlapping came from the stack, not from one of
its arguments, as Eric pointed out.

But the fact that this confusion even happened draws attention to the
fact that it's a bit non-obvious that the random_data parameter can
alias chacha_state, and in fact should do so when the caller can't rely
on the stack being cleared in a timely manner. So this commit documents
that.

Reported-by: Eric Biggers <ebiggers@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-25 17:26:40 +02:00
Jason A. Donenfeld
35a33ff380 random: use memmove instead of memcpy for remaining 32 bytes
In order to immediately overwrite the old key on the stack, before
servicing a userspace request for bytes, we use the remaining 32 bytes
of block 0 as the key. This means moving indices 8,9,a,b,c,d,e,f ->
4,5,6,7,8,9,a,b. Since 4 < 8, for the kernel implementations of
memcpy(), this doesn't actually appear to be a problem in practice. But
relying on that characteristic seems a bit brittle. So let's change that
to a proper memmove(), which is the by-the-books way of handling
overlapping memory copies.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-16 12:53:31 +02:00
Jason A. Donenfeld
b0c3e796f2 random: make random_get_entropy() return an unsigned long
Some implementations were returning type `unsigned long`, while others
that fell back to get_cycles() were implicitly returning a `cycles_t` or
an untyped constant int literal. That makes for weird and confusing
code, and basically all code in the kernel already handled it like it
was an `unsigned long`. I recently tried to handle it as the largest
type it could be, a `cycles_t`, but doing so doesn't really help with
much.

Instead let's just make random_get_entropy() return an unsigned long all
the time. This also matches the commonly used `arch_get_random_long()`
function, so now RDRAND and RDTSC return the same sized integer, which
means one can fallback to the other more gracefully.

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Theodore Ts'o <tytso@mit.edu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-13 13:58:57 +02:00
Jason A. Donenfeld
5209aed513 random: allow partial reads if later user copies fail
Rather than failing entirely if a copy_to_user() fails at some point,
instead we should return a partial read for the amount that succeeded
prior, unless none succeeded at all, in which case we return -EFAULT as
before.

This makes it consistent with other reader interfaces. For example, the
following snippet for /dev/zero outputs "4" followed by "1":

  int fd;
  void *x = mmap(NULL, 4096, PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
  assert(x != MAP_FAILED);
  fd = open("/dev/zero", O_RDONLY);
  assert(fd >= 0);
  printf("%zd\n", read(fd, x, 4));
  printf("%zd\n", read(fd, x + 4095, 4));
  close(fd);

This brings that same standard behavior to the various RNG reader
interfaces.

While we're at it, we can streamline the loop logic a little bit.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-13 13:58:57 +02:00
Jason A. Donenfeld
e3c1c4fd9e random: check for signals every PAGE_SIZE chunk of /dev/[u]random
In 1448769c9c ("random: check for signal_pending() outside of
need_resched() check"), Jann pointed out that we previously were only
checking the TIF_NOTIFY_SIGNAL and TIF_SIGPENDING flags if the process
had TIF_NEED_RESCHED set, which meant in practice, super long reads to
/dev/[u]random would delay signal handling by a long time. I tried this
using the below program, and indeed I wasn't able to interrupt a
/dev/urandom read until after several megabytes had been read. The bug
he fixed has always been there, and so code that reads from /dev/urandom
without checking the return value of read() has mostly worked for a long
time, for most sizes, not just for <= 256.

Maybe it makes sense to keep that code working. The reason it was so
small prior, ignoring the fact that it didn't work anyway, was likely
because /dev/random used to block, and that could happen for pretty
large lengths of time while entropy was gathered. But now, it's just a
chacha20 call, which is extremely fast and is just operating on pure
data, without having to wait for some external event. In that sense,
/dev/[u]random is a lot more like /dev/zero.

Taking a page out of /dev/zero's read_zero() function, it always returns
at least one chunk, and then checks for signals after each chunk. Chunk
sizes there are of length PAGE_SIZE. Let's just copy the same thing for
/dev/[u]random, and check for signals and cond_resched() for every
PAGE_SIZE amount of data. This makes the behavior more consistent with
expectations, and should mitigate the impact of Jann's fix for the
age-old signal check bug.

---- test program ----

  #include <unistd.h>
  #include <signal.h>
  #include <stdio.h>
  #include <sys/random.h>

  static unsigned char x[~0U];

  static void handle(int) { }

  int main(int argc, char *argv[])
  {
    pid_t pid = getpid(), child;
    signal(SIGUSR1, handle);
    if (!(child = fork())) {
      for (;;)
        kill(pid, SIGUSR1);
    }
    pause();
    printf("interrupted after reading %zd bytes\n", getrandom(x, sizeof(x), 0));
    kill(child, SIGTERM);
    return 0;
  }

Cc: Jann Horn <jannh@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-07 01:36:37 +02:00
Jann Horn
1448769c9c random: check for signal_pending() outside of need_resched() check
signal_pending() checks TIF_NOTIFY_SIGNAL and TIF_SIGPENDING, which
signal that the task should bail out of the syscall when possible. This
is a separate concept from need_resched(), which checks
TIF_NEED_RESCHED, signaling that the task should preempt.

In particular, with the current code, the signal_pending() bailout
probably won't work reliably.

Change this to look like other functions that read lots of data, such as
read_zero().

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-06 15:09:33 +02:00
Jason A. Donenfeld
aba120cc10 random: do not allow user to keep crng key around on stack
The fast key erasure RNG design relies on the key that's used to be used
and then discarded. We do this, making judicious use of
memzero_explicit().  However, reads to /dev/urandom and calls to
getrandom() involve a copy_to_user(), and userspace can use FUSE or
userfaultfd, or make a massive call, dynamically remap memory addresses
as it goes, and set the process priority to idle, in order to keep a
kernel stack alive indefinitely. By probing
/proc/sys/kernel/random/entropy_avail to learn when the crng key is
refreshed, a malicious userspace could mount this attack every 5 minutes
thereafter, breaking the crng's forward secrecy.

In order to fix this, we just overwrite the stack's key with the first
32 bytes of the "free" fast key erasure output. If we're returning <= 32
bytes to the user, then we can still return those bytes directly, so
that short reads don't become slower. And for long reads, the difference
is hopefully lost in the amortization, so it doesn't change much, with
that amortization helping variously for medium reads.

We don't need to do this for get_random_bytes() and the various
kernel-space callers, and later, if we ever switch to always batching,
this won't be necessary either, so there's no need to change the API of
these functions.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jann Horn <jannh@google.com>
Fixes: c92e040d57 ("random: add backtracking protection to the CRNG")
Fixes: 186873c549 ("random: use simpler fast key erasure flow on per-cpu keys")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-06 15:05:10 +02:00
Jason A. Donenfeld
48bff1053c random: opportunistically initialize on /dev/urandom reads
In 6f98a4bfee ("random: block in /dev/urandom"), we tried to make a
successful try_to_generate_entropy() call *required* if the RNG was not
already initialized. Unfortunately, weird architectures and old
userspaces combined in TCG test harnesses, making that change still not
realistic, so it was reverted in 0313bc278d ("Revert "random: block in
/dev/urandom"").

However, rather than making a successful try_to_generate_entropy() call
*required*, we can instead make it *best-effort*.

If try_to_generate_entropy() fails, it fails, and nothing changes from
the current behavior. If it succeeds, then /dev/urandom becomes safe to
use for free. This way, we don't risk the regression potential that led
to us reverting the required-try_to_generate_entropy() call before.

Practically speaking, this means that at least on x86, /dev/urandom
becomes safe. Probably other architectures with working cycle counters
will also become safe. And architectures with slow or broken cycle
counters at least won't be affected at all by this change.

So it may not be the glorious "all things are unified!" change we were
hoping for initially, but practically speaking, it makes a positive
impact.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-05 16:13:13 +02:00
Jan Varho
527a9867af random: do not split fast init input in add_hwgenerator_randomness()
add_hwgenerator_randomness() tries to only use the required amount of input
for fast init, but credits all the entropy, rather than a fraction of
it. Since it's hard to determine how much entropy is left over out of a
non-unformly random sample, either give it all to fast init or credit
it, but don't attempt to do both. In the process, we can clean up the
injection code to no longer need to return a value.

Signed-off-by: Jan Varho <jan.varho@gmail.com>
[Jason: expanded commit message]
Fixes: 73c7733f12 ("random: do not throw away excess input to crng_fast_load")
Cc: stable@vger.kernel.org # 5.17+, requires af704c856e
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-04-04 19:34:49 +02:00
Jason A. Donenfeld
1754abb3e7 random: mix build-time latent entropy into pool at init
Prior, the "input_pool_data" array needed no real initialization, and so
it was easy to mark it with __latent_entropy to populate it during
compile-time. In switching to using a hash function, this required us to
specifically initialize it to some specific state, which means we
dropped the __latent_entropy attribute. An unfortunate side effect was
this meant the pool was no longer seeded using compile-time random data.
In order to bring this back, we declare an array in rand_initialize()
with __latent_entropy and call mix_pool_bytes() on that at init, which
accomplishes the same thing as before. We make this __initconst, so that
it doesn't take up space at runtime after init.

Fixes: 6e8ec2552c ("random: use computational hash for entropy extraction")
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-31 16:43:27 -04:00
Jason A. Donenfeld
dd7aa36e53 random: re-add removed comment about get_random_{u32,u64} reseeding
The comment about get_random_{u32,u64}() not invoking reseeding got
added in an unrelated commit, that then was recently reverted by
0313bc278d ("Revert "random: block in /dev/urandom""). So this adds
that little comment snippet back, and improves the wording a bit too.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-25 08:49:40 -06:00
Jason A. Donenfeld
d97c68d178 random: treat bootloader trust toggle the same way as cpu trust toggle
If CONFIG_RANDOM_TRUST_CPU is set, the RNG initializes using RDRAND.
But, the user can disable (or enable) this behavior by setting
`random.trust_cpu=0/1` on the kernel command line. This allows system
builders to do reasonable things while avoiding howls from tinfoil
hatters. (Or vice versa.)

CONFIG_RANDOM_TRUST_BOOTLOADER is basically the same thing, but regards
the seed passed via EFI or device tree, which might come from RDRAND or
a TPM or somewhere else. In order to allow distros to more easily enable
this while avoiding those same howls (or vice versa), this commit adds
the corresponding `random.trust_bootloader=0/1` toggle.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Graham Christensen <graham@grahamc.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Link: https://github.com/NixOS/nixpkgs/pull/165355
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-25 08:49:40 -06:00
Jason A. Donenfeld
af704c856e random: skip fast_init if hwrng provides large chunk of entropy
At boot time, EFI calls add_bootloader_randomness(), which in turn calls
add_hwgenerator_randomness(). Currently add_hwgenerator_randomness()
feeds the first 64 bytes of randomness to the "fast init"
non-crypto-grade phase. But if add_hwgenerator_randomness() gets called
with more than POOL_MIN_BITS of entropy, there's no point in passing it
off to the "fast init" stage, since that's enough entropy to bootstrap
the real RNG. The "fast init" stage is just there to provide _something_
in the case where we don't have enough entropy to properly bootstrap the
RNG. But if we do have enough entropy to bootstrap the RNG, the current
logic doesn't serve a purpose. So, in the case where we're passed
greater than or equal to POOL_MIN_BITS of entropy, this commit makes us
skip the "fast init" phase.

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-25 08:49:40 -06:00
Linus Torvalds
0313bc278d Revert "random: block in /dev/urandom"
This reverts commit 6f98a4bfee.

It turns out we still can't do this.  Way too many platforms that don't
have any real source of randomness at boot and no jitter entropy because
they don't even have a cycle counter.

As reported by Guenter Roeck:

 "This causes a large number of qemu boot test failures for various
  architectures (arm, m68k, microblaze, sparc32, xtensa are the ones I
  observed).

  Common denominator is that boot hangs at 'Saving random seed:'"

This isn't hugely unexpected - we tried it, it failed, so now we'll
revert it.

Link: https://lore.kernel.org/all/20220322155820.GA1745955@roeck-us.net/
Reported-and-bisected-by: Guenter Roeck <linux@roeck-us.net>
Cc: Jason Donenfeld <Jason@zx2c4.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 09:17:20 -07:00
Linus Torvalds
616355cc81 for-5.18/block-2022-03-18
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmI0+GcQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgprUpD/9aTJEnj7VCw7UouSsg098sdjtoy9ilslU3
 ew47K8CIXHbCB4CDqLnFyvCwAdG1XGgS+fUmFAxvTr29R9SZeS5d+bXL6sZzEo0C
 bwxsJy9MM2QRtMvB+giAt1myXbwB8cG+ketMBWXqwXXRHRzPbbQfMZia7FqWMnfY
 KQanH9IwYHp1oa5U/W6Qcjm4oCnLgBMRwqByzUCtiF3y9qgaLkK+3IgkNwjJQjLA
 DTeUJ/9CgxGQQbzA+LPktbw2xfTqiUfcKq0mWx6Zt4wwNXn1ClqUDUXX6QSM8/5u
 3OimbscSkEPPTIYZbVBPkhFnAlQb4JaJEgOrbXvYKVV2Dh+eZY81XwNeE/E8gdBY
 TnHOTOCjkN/4sR3hIrWazlJzPLdpPA0eOYrhguCraQsX9mcsYNxlJ9otRv/Ve99g
 uqL0RZg3+NoK84fm79FCGy/ZmPQJvJttlBT9CKVwylv/Lky42xWe7AdM3OipKluY
 2nh+zN5Ai7WxZdTKXQFRhCSWfWQ+1qW51tB3dcGW+BooZr/oox47qKQVcHsEWbq1
 RNR45F5a4AuPwYUHF/P36WviLnEuq9AvX7OTTyYOplyVQohKIoDXp9chVzLNzBiZ
 KBR00W6MLKKKN+8foalQWgNyb2i2PH7Ib4xRXvXj/22Vwxg5UmUoBmSDSas9SZUS
 +dMo7CtNgA==
 =DpgP
 -----END PGP SIGNATURE-----

Merge tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - BFQ cleanups and fixes (Yu, Zhang, Yahu, Paolo)

 - blk-rq-qos completion fix (Tejun)

 - blk-cgroup merge fix (Tejun)

 - Add offline error return value to distinguish it from an IO error on
   the device (Song)

 - IO stats fixes (Zhang, Christoph)

 - blkcg refcount fixes (Ming, Yu)

 - Fix for indefinite dispatch loop softlockup (Shin'ichiro)

 - blk-mq hardware queue management improvements (Ming)

 - sbitmap dead code removal (Ming, John)

 - Plugging merge improvements (me)

 - Show blk-crypto capabilities in sysfs (Eric)

 - Multiple delayed queue run improvement (David)

 - Block throttling fixes (Ming)

 - Start deprecating auto module loading based on dev_t (Christoph)

 - bio allocation improvements (Christoph, Chaitanya)

 - Get rid of bio_devname (Christoph)

 - bio clone improvements (Christoph)

 - Block plugging improvements (Christoph)

 - Get rid of genhd.h header (Christoph)

 - Ensure drivers use appropriate flush helpers (Christoph)

 - Refcounting improvements (Christoph)

 - Queue initialization and teardown improvements (Ming, Christoph)

 - Misc fixes/improvements (Barry, Chaitanya, Colin, Dan, Jiapeng,
   Lukas, Nian, Yang, Eric, Chengming)

* tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block: (127 commits)
  block: cancel all throttled bios in del_gendisk()
  block: let blkcg_gq grab request queue's refcnt
  block: avoid use-after-free on throttle data
  block: limit request dispatch loop duration
  block/bfq-iosched: Fix spelling mistake "tenative" -> "tentative"
  sr: simplify the local variable initialization in sr_block_open()
  block: don't merge across cgroup boundaries if blkcg is enabled
  block: fix rq-qos breakage from skipping rq_qos_done_bio()
  block: flush plug based on hardware and software queue order
  block: ensure plug merging checks the correct queue at least once
  block: move rq_qos_exit() into disk_release()
  block: do more work in elevator_exit
  block: move blk_exit_queue into disk_release
  block: move q_usage_counter release into blk_queue_release
  block: don't remove hctx debugfs dir from blk_mq_exit_queue
  block: move blkcg initialization/destroy into disk allocation/release handler
  sr: implement ->free_disk to simplify refcounting
  sd: implement ->free_disk to simplify refcounting
  sd: delay calling free_opal_dev
  sd: call sd_zbc_release_disk before releasing the scsi_device reference
  ...
2022-03-21 16:48:55 -07:00
Jason A. Donenfeld
3e504d2026 random: check for signal and try earlier when generating entropy
Rather than waiting a full second in an interruptable waiter before
trying to generate entropy, try to generate entropy first and wait
second. While waiting one second might give an extra second for getting
entropy from elsewhere, we're already pretty late in the init process
here, and whatever else is generating entropy will still continue to
contribute. This has implications on signal handling: we call
try_to_generate_entropy() from wait_for_random_bytes(), and
wait_for_random_bytes() always uses wait_event_interruptible_timeout()
when waiting, since it's called by userspace code in restartable
contexts, where signals can pend. Since try_to_generate_entropy() now
runs first, if a signal is pending, it's necessary for
try_to_generate_entropy() to check for signals, since it won't hit the
wait until after try_to_generate_entropy() has returned. And even before
this change, when entering a busy loop in try_to_generate_entropy(), we
should have been checking to see if any signals are pending, so that a
process doesn't get stuck in that loop longer than expected.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-12 20:51:39 -07:00