IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
On 32-bit systems, we'll lose the top bits of index because arithmetic
will be performed in unsigned long instead of unsigned long long. This
affects files over 4GB in size.
Link: https://lkml.kernel.org/r/20231218135837.3310403-4-willy@infradead.org
Fixes: 6100e34b25 ("mm, memory_failure: Teach memory_failure() about dev_pagemap pages")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A process may map only some of the pages in a folio, and might be missed
if it maps the poisoned page but not the head page. Or it might be
unnecessarily hit if it maps the head page, but not the poisoned page.
Link: https://lkml.kernel.org/r/20231218135837.3310403-3-willy@infradead.org
Fixes: 7af446a841 ("HWPOISON, hugetlb: enable error handling path for hugepage")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Three memory-failure fixes".
I've been looking at the memory-failure code and I believe I have found
three bugs that need fixing -- one going all the way back to 2010! I'll
have more patches later to use folios more extensively but didn't want
these bugfixes to get caught up in that.
This patch (of 3):
Both collect_procs_anon() and collect_procs_file() iterate over the VMA
interval trees looking for a single pgoff, so it is wrong to look for the
pgoff of the head page as is currently done. However, it is also wrong to
look at page->mapping of the precise page as this is invalid for tail
pages. Clear up the confusion by passing both the folio and the precise
page to collect_procs().
Link: https://lkml.kernel.org/r/20231218135837.3310403-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231218135837.3310403-2-willy@infradead.org
Fixes: 415c64c145 ("mm/memory-failure: split thp earlier in memory error handling")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Large folios occupy N consecutive entries in the swap cache instead of
using multi-index entries like the page cache. However, if a large folio
is re-added to the LRU list, it can be migrated. The migration code was
not aware of the difference between the swap cache and the page cache and
assumed that a single xas_store() would be sufficient.
This leaves potentially many stale pointers to the now-migrated folio in
the swap cache, which can lead to almost arbitrary data corruption in the
future. This can also manifest as infinite loops with the RCU read lock
held.
[willy@infradead.org: modifications to the changelog & tweaked the fix]
Fixes: 3417013e0d ("mm/migrate: Add folio_migrate_mapping()")
Link: https://lkml.kernel.org/r/20231214045841.961776-1-willy@infradead.org
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Charan Teja Kalla <quic_charante@quicinc.com>
Closes: https://lkml.kernel.org/r/1700569840-17327-1-git-send-email-quic_charante@quicinc.com
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The following concurrency may cause the data read to be inconsistent with
the data on disk:
cpu1 cpu2
------------------------------|------------------------------
// Buffered write 2048 from 0
ext4_buffered_write_iter
generic_perform_write
copy_page_from_iter_atomic
ext4_da_write_end
ext4_da_do_write_end
block_write_end
__block_commit_write
folio_mark_uptodate
// Buffered read 4096 from 0 smp_wmb()
ext4_file_read_iter set_bit(PG_uptodate, folio_flags)
generic_file_read_iter i_size_write // 2048
filemap_read unlock_page(page)
filemap_get_pages
filemap_get_read_batch
folio_test_uptodate(folio)
ret = test_bit(PG_uptodate, folio_flags)
if (ret)
smp_rmb();
// Ensure that the data in page 0-2048 is up-to-date.
// New buffered write 2048 from 2048
ext4_buffered_write_iter
generic_perform_write
copy_page_from_iter_atomic
ext4_da_write_end
ext4_da_do_write_end
block_write_end
__block_commit_write
folio_mark_uptodate
smp_wmb()
set_bit(PG_uptodate, folio_flags)
i_size_write // 4096
unlock_page(page)
isize = i_size_read(inode) // 4096
// Read the latest isize 4096, but without smp_rmb(), there may be
// Load-Load disorder resulting in the data in the 2048-4096 range
// in the page is not up-to-date.
copy_page_to_iter
// copyout 4096
In the concurrency above, we read the updated i_size, but there is no read
barrier to ensure that the data in the page is the same as the i_size at
this point, so we may copy the unsynchronized page out. Hence adding the
missing read memory barrier to fix this.
This is a Load-Load reordering issue, which only occurs on some weak
mem-ordering architectures (e.g. ARM64, ALPHA), but not on strong
mem-ordering architectures (e.g. X86). And theoretically the problem
doesn't only happen on ext4, filesystems that call filemap_read() but
don't hold inode lock (e.g. btrfs, f2fs, ubifs ...) will have this
problem, while filesystems with inode lock (e.g. xfs, nfs) won't have
this problem.
Link: https://lkml.kernel.org/r/20231213062324.739009-1-libaokun1@huawei.com
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: yangerkun <yangerkun@huawei.com>
Cc: Yu Kuai <yukuai3@huawei.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Similar to commit 09c6304e38 ("kasan: test: fix compatibility with
FORTIFY_SOURCE") the kernel is panicing in kmalloc_oob_memset_*.
This is due to the `ptr` not being hidden from the optimizer which would
disable the runtime fortify string checker.
kernel BUG at lib/string_helpers.c:1048!
Call Trace:
[<00000000272502e2>] fortify_panic+0x2a/0x30
([<00000000272502de>] fortify_panic+0x26/0x30)
[<001bffff817045c4>] kmalloc_oob_memset_2+0x22c/0x230 [kasan_test]
Hide the `ptr` variable from the optimizer to fix the kernel panic. Also
define a memset_size variable and hide that as well. This cleans up the
code and follows the same convention as other tests.
[npache@redhat.com: address review comments from Andrey]
Link: https://lkml.kernel.org/r/20231214164423.6202-1-npache@redhat.com
Link: https://lkml.kernel.org/r/20231212232659.18839-1-npache@redhat.com
Signed-off-by: Nico Pache <npache@redhat.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The pcpu setup when using the page allocator sets up a new vmalloc
mapping very early in the boot process, so early that it cannot use the
flush_cache_vmap() function which may depend on structures not yet
initialized (for example in riscv, we currently send an IPI to flush
other cpus TLB).
But on some architectures, we must call flush_cache_vmap(): for example,
in riscv, some uarchs can cache invalid TLB entries so we need to flush
the new established mapping to avoid taking an exception.
So fix this by introducing a new function flush_cache_vmap_early() which
is called right after setting the new page table entry and before
accessing this new mapping. This new function implements a local flush
tlb on riscv and is no-op for other architectures (same as today).
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
In the effort to reduce zombie memcgs [1], it was discovered that the
memcg LRU doesn't apply enough pressure on offlined memcgs. Specifically,
instead of rotating them to the tail of the current generation
(MEMCG_LRU_TAIL) for a second attempt, it moves them to the next
generation (MEMCG_LRU_YOUNG) after the first attempt.
Not applying enough pressure on offlined memcgs can cause them to build
up, and this can be particularly harmful to memory-constrained systems.
On Pixel 8 Pro, launching apps for 50 cycles:
Before After Change
Zombie memcgs 45 35 -22%
[1] https://lore.kernel.org/CABdmKX2M6koq4Q0Cmp_-=wbP0Qa190HdEGGaHfxNS05gAkUtPA@mail.gmail.com/
Link: https://lkml.kernel.org/r/20231208061407.2125867-4-yuzhao@google.com
Fixes: e4dde56cd2 ("mm: multi-gen LRU: per-node lru_gen_folio lists")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: T.J. Mercier <tjmercier@google.com>
Tested-by: T.J. Mercier <tjmercier@google.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
While investigating kswapd "consuming 100% CPU" [1] (also see "mm/mglru:
try to stop at high watermarks"), it was discovered that the memcg LRU can
breach the thrashing protection imposed by min_ttl_ms.
Before the memcg LRU:
kswapd()
shrink_node_memcgs()
mem_cgroup_iter()
inc_max_seq() // always hit a different memcg
lru_gen_age_node()
mem_cgroup_iter()
check the timestamp of the oldest generation
After the memcg LRU:
kswapd()
shrink_many()
restart:
iterate the memcg LRU:
inc_max_seq() // occasionally hit the same memcg
if raced with lru_gen_rotate_memcg():
goto restart
lru_gen_age_node()
mem_cgroup_iter()
check the timestamp of the oldest generation
Specifically, when the restart happens in shrink_many(), it needs to stick
with the (memcg LRU) generation it began with. In other words, it should
neither re-read memcg_lru->seq nor age an lruvec of a different
generation. Otherwise it can hit the same memcg multiple times without
giving lru_gen_age_node() a chance to check the timestamp of that memcg's
oldest generation (against min_ttl_ms).
[1] https://lore.kernel.org/CAK8fFZ4DY+GtBA40Pm7Nn5xCHy+51w3sfxPqkqpqakSXYyX+Wg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20231208061407.2125867-3-yuzhao@google.com
Fixes: e4dde56cd2 ("mm: multi-gen LRU: per-node lru_gen_folio lists")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Tested-by: T.J. Mercier <tjmercier@google.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The initial MGLRU patchset didn't include the memcg LRU support, and it
relied on should_abort_scan(), added by commit f76c833788 ("mm:
multi-gen LRU: optimize multiple memcgs"), to "backoff to avoid
overshooting their aggregate reclaim target by too much".
Later on when the memcg LRU was added, should_abort_scan() was deemed
unnecessary, and the test results [1] showed no side effects after it was
removed by commit a579086c99 ("mm: multi-gen LRU: remove eviction
fairness safeguard").
However, that test used memory.reclaim, which sets nr_to_reclaim to
SWAP_CLUSTER_MAX. So it can overshoot only by SWAP_CLUSTER_MAX-1 pages,
i.e., from nr_reclaimed=nr_to_reclaim-1 to
nr_reclaimed=nr_to_reclaim+SWAP_CLUSTER_MAX-1. Compared with the batch
size kswapd sets to nr_to_reclaim, SWAP_CLUSTER_MAX is tiny. Therefore
that test isn't able to reproduce the worst case scenario, i.e., kswapd
overshooting GBs on large systems and "consuming 100% CPU" (see the Closes
tag).
Bring back a simplified version of should_abort_scan() on top of the memcg
LRU, so that kswapd stops when all eligible zones are above their
respective high watermarks plus a small delta to lower the chance of
KSWAPD_HIGH_WMARK_HIT_QUICKLY. Note that this only applies to order-0
reclaim, meaning compaction-induced reclaim can still run wild (which is a
different problem).
On Android, launching 55 apps sequentially:
Before After Change
pgpgin 838377172 802955040 -4%
pgpgout 38037080 34336300 -10%
[1] https://lore.kernel.org/20221222041905.2431096-1-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20231208061407.2125867-2-yuzhao@google.com
Fixes: a579086c99 ("mm: multi-gen LRU: remove eviction fairness safeguard")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Charan Teja Kalla <quic_charante@quicinc.com>
Reported-by: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Closes: https://lore.kernel.org/CAK8fFZ4DY+GtBA40Pm7Nn5xCHy+51w3sfxPqkqpqakSXYyX+Wg@mail.gmail.com/
Tested-by: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: T.J. Mercier <tjmercier@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Unmapped folios accessed through file descriptors can be underprotected.
Those folios are added to the oldest generation based on:
1. The fact that they are less costly to reclaim (no need to walk the
rmap and flush the TLB) and have less impact on performance (don't
cause major PFs and can be non-blocking if needed again).
2. The observation that they are likely to be single-use. E.g., for
client use cases like Android, its apps parse configuration files
and store the data in heap (anon); for server use cases like MySQL,
it reads from InnoDB files and holds the cached data for tables in
buffer pools (anon).
However, the oldest generation can be very short lived, and if so, it
doesn't provide the PID controller with enough time to respond to a surge
of refaults. (Note that the PID controller uses weighted refaults and
those from evicted generations only take a half of the whole weight.) In
other words, for a short lived generation, the moving average smooths out
the spike quickly.
To fix the problem:
1. For folios that are already on LRU, if they can be beyond the
tracking range of tiers, i.e., five accesses through file
descriptors, move them to the second oldest generation to give them
more time to age. (Note that tiers are used by the PID controller
to statistically determine whether folios accessed multiple times
through file descriptors are worth protecting.)
2. When adding unmapped folios to LRU, adjust the placement of them so
that they are not too close to the tail. The effect of this is
similar to the above.
On Android, launching 55 apps sequentially:
Before After Change
workingset_refault_anon 25641024 25598972 0%
workingset_refault_file 115016834 106178438 -8%
Link: https://lkml.kernel.org/r/20231208061407.2125867-1-yuzhao@google.com
Fixes: ac35a49023 ("mm: multi-gen LRU: minimal implementation")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reported-by: Charan Teja Kalla <quic_charante@quicinc.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Cc: T.J. Mercier <tjmercier@google.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Split folios during the second loop of shmem_undo_range. It's not
sufficient to only split folios when dealing with partial pages, since
it's possible for a THP to be faulted in after that point. Calling
truncate_inode_folio in that situation can result in throwing away data
outside of the range being targeted.
[akpm@linux-foundation.org: tidy up comment layout]
Link: https://lkml.kernel.org/r/20230418084031.3439795-1-stevensd@google.com
Fixes: b9a8a4195c ("truncate,shmem: Handle truncates that split large folios")
Signed-off-by: David Stevens <stevensd@chromium.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The cleanup tasks of kdamond threads including reset of corresponding
DAMON context's ->kdamond field and decrease of global nr_running_ctxs
counter is supposed to be executed by kdamond_fn(). However, commit
0f91d13366 ("mm/damon: simplify stop mechanism") made neither
damon_start() nor damon_stop() ensure the corresponding kdamond has
started the execution of kdamond_fn().
As a result, the cleanup can be skipped if damon_stop() is called fast
enough after the previous damon_start(). Especially the skipped reset
of ->kdamond could cause a use-after-free.
Fix it by waiting for start of kdamond_fn() execution from
damon_start().
Link: https://lkml.kernel.org/r/20231208175018.63880-1-sj@kernel.org
Fixes: 0f91d13366 ("mm/damon: simplify stop mechanism")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: Changbin Du <changbin.du@intel.com>
Cc: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org> # 5.15.x
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Testing shows fast_isolate_freepages can blindly choose an unsuitable
pageblock from time to time particularly while the min mark is used from
XXX path:
if (!page) {
cc->fast_search_fail++;
if (scan_start) {
/*
* Use the highest PFN found above min. If one was
* not found, be pessimistic for direct compaction
* and use the min mark.
*/
if (highest >= min_pfn) {
page = pfn_to_page(highest);
cc->free_pfn = highest;
} else {
if (cc->direct_compaction && pfn_valid(min_pfn)) { /* XXX */
page = pageblock_pfn_to_page(min_pfn,
min(pageblock_end_pfn(min_pfn),
zone_end_pfn(cc->zone)),
cc->zone);
cc->free_pfn = min_pfn;
}
}
}
}
The reason is that no code is doing any check on the min_pfn
min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
In contrast, slow path of isolate_freepages() is always skipping
unsuitable pageblocks in a decent way.
This issue doesn't happen quite often. When running 25 machines with
16GiB memory for one night, most of them can hit this unexpected code
path. However the frequency isn't like many times per second. It might
be one time in a couple of hours. Thus, it is very hard to measure the
visible performance impact in my machines though the affection of choosing
the unsuitable migration_target should be negative in theory.
I feel it's still worth fixing this to at least make the code
theoretically self-explanatory as it is quite odd an unsuitable
migration_target can be still migration_target.
Link: https://lkml.kernel.org/r/20231206110054.61617-1-v-songbaohua@oppo.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reported-by: Zhanyuan Hu <huzhanyuan@oppo.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vma_pages() is more readable and also better at avoiding error codes, so
use vma_pages() instead of direct operations on vma
Link: https://lkml.kernel.org/r/tencent_151850CF327EB055BBC83298A929BD06CD0A@qq.com
Signed-off-by: Chen Haonan <chen.haonan2@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The ret variable can be defined without assigning a value, as it is
assigned before use.
Link: https://lkml.kernel.org/r/20231205021751.100459-1-zeming@nfschina.com
Signed-off-by: Li zeming <zeming@nfschina.com>
Reviewed-by: Andrew Morton <akpm@linux-foudation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All the users of vmemmap_remap_range() will hold the mmap lock and release
it once it returns, it is naturally to move the lock to
vmemmap_remap_range() to simplify the code and the users.
Link: https://lkml.kernel.org/r/20231205030853.3921-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The compiler will optimize the code as much as possible if we add the
check of CONFIG_MEMORY_HOTPLUG back.
Link: https://lkml.kernel.org/r/20231205030530.3802-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The ret variable can be defined without assigning a value, as it is
assigned before use.
Link: https://lkml.kernel.org/r/20231205022954.101045-1-zeming@nfschina.com
Signed-off-by: Li zeming <zeming@nfschina.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently enabling THP support (CONFIG_TRANSPARENT_HUGEPAGE) requires
enabling either CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS or
CONFIG_TRANSPARENT_HUGEPAGE_MADVISE, which both cause khugepaged starting
by default at kernel bootup. Add the third choice
CONFIG_TRANSPARENT_HUGEPAGE_NEVER, in line with the existing kernel
command line setting transparent_hugepage=never, to disable THP by default
(in particular, to prevent starting khugepaged by default) but still allow
enabling it at runtime via sysfs.
Rationale: khugepaged has its own non-negligible memory cost even if it is
not used by any applications, since it bumps up vm.min_free_kbytes to its
own required minimum in set_recommended_min_free_kbytes(). For example,
on a machine with 4GB RAM, with 3 mm zones and pageblock_order ==
MAX_ORDER, starting khugepaged causes vm.min_free_kbytes increase from 8MB
to 132MB.
So if we use THP on machines with e.g. >=8GB of memory for better
performance, but avoid using it on lower-memory machines to avoid its
memory overhead, then for the same reason we also want to avoid even
starting khugepaged on those <8GB machines. So with
CONFIG_TRANSPARENT_HUGEPAGE_NEVER we can use the same kernel image on both
>=8GB and <8GB machines, with THP support enabled but khugepaged not
started by default. The userspace can then decide to enable THP via sysfs
if needed, based on the total amount of memory.
This could also be achieved with the existing transparent_hugepage=never
setting in the kernel command line instead. But it seems cleaner to avoid
tweaking the command line for such a basic setting.
P.S. I see that CONFIG_TRANSPARENT_HUGEPAGE_NEVER was already proposed
in the past [1] but without an explanation of the purpose.
[1] https://lore.kernel.org/all/202211301651462590168@zte.com.cn/
Link: https://lkml.kernel.org/r/20231205170244.2746210-1-dmaluka@chromium.org
Link: https://lore.kernel.org/all/20231204163254.2636289-1-dmaluka@chromium.org/
Signed-off-by: Dmytro Maluka <dmaluka@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use more folio APIs to save six compound_head() calls in
__split_huge_page_tail().
Link: https://lkml.kernel.org/r/20231110033324.2455523-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
On systems with large number of CPUs, the following soft lockup splat
might sometimes happen:
[ 2656.001617] watchdog: BUG: soft lockup - CPU#364 stuck for 21s! [ksoftirqd/364:2206]
:
[ 2656.141194] RIP: 0010:_raw_spin_unlock_irqrestore+0x3d/0x70
:
2656.241214] Call Trace:
[ 2656.243971] <IRQ>
[ 2656.246237] ? show_trace_log_lvl+0x1c4/0x2df
[ 2656.251152] ? show_trace_log_lvl+0x1c4/0x2df
[ 2656.256066] ? kmemleak_free_percpu+0x11f/0x1f0
[ 2656.261173] ? watchdog_timer_fn+0x379/0x470
[ 2656.265984] ? __pfx_watchdog_timer_fn+0x10/0x10
[ 2656.271179] ? __hrtimer_run_queues+0x5f3/0xd00
[ 2656.276283] ? __pfx___hrtimer_run_queues+0x10/0x10
[ 2656.281783] ? ktime_get_update_offsets_now+0x95/0x2c0
[ 2656.287573] ? ktime_get_update_offsets_now+0xdd/0x2c0
[ 2656.293380] ? hrtimer_interrupt+0x2e9/0x780
[ 2656.298221] ? __sysvec_apic_timer_interrupt+0x184/0x640
[ 2656.304211] ? sysvec_apic_timer_interrupt+0x8e/0xc0
[ 2656.309807] </IRQ>
[ 2656.312169] <TASK>
[ 2656.326110] kmemleak_free_percpu+0x11f/0x1f0
[ 2656.331015] free_percpu.part.0+0x1b/0xe70
[ 2656.335635] free_vfsmnt+0xb9/0x100
[ 2656.339567] rcu_do_batch+0x3c8/0xe30
[ 2656.363693] rcu_core+0x3de/0x5a0
[ 2656.367433] __do_softirq+0x2d0/0x9a8
[ 2656.381119] run_ksoftirqd+0x36/0x60
[ 2656.385145] smpboot_thread_fn+0x556/0x910
[ 2656.394971] kthread+0x2a4/0x350
[ 2656.402826] ret_from_fork+0x29/0x50
[ 2656.406861] </TASK>
The issue is caused by kmemleak registering each per_cpu_ptr()
corresponding to the __percpu pointer. This is unnecessary since such
individual per-CPU pointers are not tracked anyway. Create a new
object_percpu_tree_root rbtree that stores a single __percpu pointer
together with an OBJECT_PERCPU flag for the kmemleak metadata. Scanning
needs to be done for all per_cpu_ptr() pointers with a cond_resched()
between each CPU iteration to avoid RCU stalls.
[catalin.marinas@arm.com: update comment]
Link: https://lkml.kernel.org/r/20231206114414.2085824-1-catalin.marinas@arm.com
Link: https://lore.kernel.org/r/20231127194153.289626-1-longman@redhat.comLink: https://lkml.kernel.org/r/20231201190829.825856-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Waiman Long <longman@redhat.com>
Closes: https://lore.kernel.org/r/20231127194153.289626-1-longman@redhat.com
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The THP machinery does not support order-1 folios because it requires meta
data spanning the first 3 `struct page`s. So order-2 is the smallest
large folio that we can safely create.
There was a theoretical bug whereby if ra->size was 2 or 3 pages (due to
the device-specific bdi->ra_pages being set that way), we could end up
with order = 1. Fix this by unconditionally checking if the preferred
order is 1 and if so, set it to 0. Previously this was done in a few
specific places, but with this refactoring it is done just once,
unconditionally, at the end of the calculation.
This is a theoretical bug found during review of the code; I have no
evidence to suggest this manifests in the real world (I expect all
device-specific ra_pages values are much bigger than 3).
Link: https://lkml.kernel.org/r/20231201161045.3962614-1-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use folio_prealloc() helper and convert to use a folio in do_cow_fault(),
which save five compound_head() calls.
Link: https://lkml.kernel.org/r/20231118023232.1409103-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's rename page_copy_prealloc() to folio_prealloc(), which could be
reused in more functons, as it maybe zero the new page, pass a new
need_zero to it, and call the vma_alloc_zeroed_movable_folio() if
need_zero is true.
Link: https://lkml.kernel.org/r/20231118023232.1409103-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use a folio in validate_page_before_insert() to save two compound_head()
calls.
Link: https://lkml.kernel.org/r/20231118023232.1409103-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: cleanup and use more folio in page fault", v3.
Rename page_copy_prealloc() to folio_prealloc(), which is used by more
functions, also do more folio conversion in page fault.
This patch (of 5):
Since ksm only support normal page, no swapout/in for ksm large folio too,
add large folio check in ksm_might_need_to_copy(), also convert
page->index to folio->index as page->index is going away.
Then convert ksm_might_need_to_copy() to use more folio api to save nine
compound_head() calls, short 'address' to reduce max-line-length.
Link: https://lkml.kernel.org/r/20231118023232.1409103-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20231118023232.1409103-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Implement a simple kunit test for testing the behavior of the feedback
loop algorithm for the aim-oriented feedback-friven DAMOS aggressiveness
auto tuning.
Link: https://lkml.kernel.org/r/20231130023652.50284-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To update DAMOS quota goals, users need to enter 'commit' command to the
'state' file of the kdamond, which applies not only the goals but entire
inputs. It is inefficient. Implement yet another 'state' file input
command for reading and committing only the scheme quota goals, namely
'commit_schemes_quota_goals'.
Link: https://lkml.kernel.org/r/20231130023652.50284-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Make DAMON sysfs interface to read the user inputs for DAMOS quota goals
and pass those to DAMOS, so that the users can use the quota auto-tuning
feature. It uses the DAMON sysfs interface's user input commit mechanism,
which applies all user inputs for initial starting of DAMON and online
input updates, which can be done by writing 'on' and 'commit' to the
kdamond's 'state' file, respectively. In other words, the user should
periodically write appropriate value to 'current_value' files and 'commit'
command to the 'state' file. 'target_value' files could also be similarly
updated at any time.
Note that the interface is supporting multiple goals while the core logic
supports only one goal. DAMON sysfs interface passes only best feedback
among the given inputs, to avoid making DAMOS too aggressive.
Link: https://lkml.kernel.org/r/20231130023652.50284-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Implement DAMON sysfs directories and files for the goals of DAMOS quota.
Those allow users set multiple goals for their aim, with target values.
Users can further enter the current score value for each goal as feedback
for DAMOS.
Note that this commit is implementing only the basic file operations, and
not connecting the files with the DAMOS core logic. Hence writing
something to the files makes no real effect. The following commit will
connect the file operations and the core logic.
Link: https://lkml.kernel.org/r/20231130023652.50284-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/damon: let users feed and tame/auto-tune DAMOS".
Introduce Aim-oriented Feedback-driven DAMOS Aggressiveness Auto-tuning.
It makes DAMOS self-tuned with periodic simple user feedback.
Background: DAMOS Control Difficulty
====================================
DAMOS helps users easily implement access pattern aware system operations.
However, controlling DAMOS in the wild is not that easy.
The basic way for DAMOS control is specifying the target access pattern.
In this approach, the user is assumed to well understand the access
pattern and the characteristics of the system and the workloads. Though
there are useful tools for that, it takes time and effort depending on the
complexity and the dynamicity of the system and the workloads. After all,
the access pattern consists of three ranges, namely the size, the access
rate, and the age of the regions. It means users need to tune six
parameters, which is anyway not a simple task.
One of the worst cases would be DAMOS being too aggressive like a
berserker, and therefore consuming too much system resource and making
unwanted radical system operations. To let users avoid such cases, DAMOS
allows users to set the upper-limit of the schemes' aggressiveness, namely
DAMOS quota. DAMOS further provides its best-effort under the limit by
prioritizing regions based on the access pattern of the regions. For
example, users can ask DAMOS to page out up to 100 MiB of memory regions
per second. Then DAMOS pages out regions that are not accessed for a
longer time (colder) first under the limit. This allows users to set the
target access pattern a bit naive with wider ranges, and focus on tuning
only one parameter, the quota. In other words, the number of parameters
to tune can be reduced from six to one.
Still, however, the optimum value for the quota depends on the system and
the workloads' characteristics, so not that simple. The number of
parameters to tune can also increase again if the user needs to run
multiple schemes.
Aim-oriented Feedback-driven DAMOS Aggressiveness Auto Tuning
=============================================================
Users would use DAMOS since they want to achieve something with it. They
will likely have measurable metrics representing the achievement and the
target number of the metric like SLO, and continuously measure that
anyway. While the additional cost of getting the information is nearly
zero, it could be useful for DAMOS to understand how appropriate its
current aggressiveness is set, and adjust it on its own to make the metric
value more close to the target.
Based on this idea, we introduce a new way of tuning DAMOS with nearly
zero additional effort, namely Aim-oriented Feedback-driven DAMOS
Aggressiveness Auto Tuning. It asks users to provide feedback
representing how well DAMOS is doing relative to the users' aim. Then
DAMOS adjusts its aggressiveness, specifically the quota that provides
the best effort result under the limit, based on the current level of
the aggressiveness and the users' feedback.
Implementation
==============
The implementation asks users to represent the feedback with score
numbers. The scores could be anything including user-space specific
metrics including latency and throughput of special user-space workloads,
and system metrics including free memory ratio, memory pressure stall time
(PSI), and active to inactive LRU lists size ratio. The feedback scores
and the aggressiveness of the given DAMOS scheme are assumed to be
positively proportional, though. Selecting metrics of the assumption is
the users' responsibility.
The core logic uses the below simple feedback loop algorithm to calculate
the next aggressiveness level of the scheme from the current
aggressiveness level and the current feedback (target_score and
current_score). It calculates the compensation for next aggressiveness as
a proportion of current aggressiveness and distance to the target score.
As a result, it arrives at the near-goal state in a short time using big
steps when it's far from the goal, but avoids making unnecessarily radical
changes that could turn out to be a bad decision using small steps when
its near to the goal.
f(n) = max(1, f(n - 1) * ((target_score - current_score) / target_score + 1))
Note that the compensation value becomes negative when it's over
achieving the goal. That's why the feedback metric and the
aggressiveness of the scheme should be positively proportional. The
distance-adaptive speed manipulation is simply applied.
Example Use Cases
=================
If users want to reduce the memory footprint of the system as much as
possible as long as the time spent for handling the resulting memory
pressure is within a threshold, they could use DAMOS scheme that reclaims
cold memory regions aiming for a little level of memory pressure stall
time.
If users want the active/inactive LRU lists well balanced to reduce the
performance impact due to possible future memory pressure, they could use
two schemes. The first one would be set to locate hot pages in the active
LRU list, aiming for a specific active-to-inactive LRU list size ratio,
say, 70%. The second one would be to locate cold pages in the inactive
LRU list, aiming for a specific inactive-to-active LRU list size ratio,
say, 30%. Then, DAMOS will balance the two schemes based on the goal and
feedback.
This aim-oriented auto tuning could also be useful for general
balancing-required access aware system operations such as system memory
auto scaling[3] and tiered memory management[4]. These two example usages
are not what current DAMOS implementation is already supporting, but
require additional DAMOS action developments, though.
Evaluation: subtle memory pressure aiming proactive reclamation
===============================================================
To show if the implementation works as expected, we prepare four different
system configurations on AWS i3.metal instances. The first setup
(original) runs the workload without any DAMOS scheme. The second setup
(not-tuned) runs the workload with a virtual address space-based proactive
reclamation scheme that pages out memory regions that are not accessed for
five seconds or more. The third setup (offline-tuned) runs the same
proactive reclamation DAMOS scheme, but after making it tuned for each
workload offline, using our previous user-space driven automatic tuning
approach, namely DAMOOS[1]. The fourth and final setup (AFDAA) runs the
scheme that is the same as that of 'not-tuned' setup, but aims to keep
0.5% of 'some' memory pressure stall time (PSI) for the last 10 seconds
using the aiming-oriented auto tuning.
For each setup, we run realistic workloads from PARSEC3 and SPLASH-2X
benchmark suites. For each run, we measure RSS and runtime of the
workload, and 'some' memory pressure stall time (PSI) of the system. We
repeat the runs five times and use averaged measurements.
For simple comparison of the results, we normalize the measurements to
those of 'original'. In the case of the PSI, though, the measurement for
'original' was zero, so we normalize the value to that of 'not-tuned'
scheme's result. The normalized results are shown below.
Not-tuned Offline-tuned AFDAA
RSS 0.622688178226118 0.787950678944904 0.740093483278979
runtime 1.11767826657912 1.0564674983585 1.0910833880499
PSI 1 0.727521443794069 0.308498846350299
The 'not-tuned' scheme achieves about 38.7% memory saving but incur about
11.7% runtime slowdown. The 'offline-tuned' scheme achieves about 22.2%
memory saving with about 5.5% runtime slowdown. It also achieves about
28.2% memory pressure stall time saving. AFDAA achieves about 26% memory
saving with about 9.1% runtime slowdown. It also achieves about 69.1%
memory pressure stall time saving. We repeat this test multiple times,
and get consistent results. AFDAA is now integrated in our daily DAMON
performance test setup.
Apparently the aggressiveness of 'AFDAA' setup is somewhere between those
of 'not-tuned' and 'offline-tuned' setup, since its memory saving and
runtime overhead are between those of the other two setups. Actually we
set the memory pressure stall time goal aiming for this middle
aggressiveness. The difference in the two metrics are not significant,
though. However, it shows significant saving of the memory pressure stall
time, which was the goal of the auto-tuning, over the two variants.
Hence, we conclude the automatic tuning is working as expected.
Please note that the AFDAA setup is only for the evaluation, and
therefore intentionally set a bit aggressive. It might not be
appropriate for production environments.
The test code is also available[2], so you could reproduce it on your
system and workloads.
Patches Sequence
================
The first four patches implement the core logic and user interfaces for
the auto tuning. The first patch implements the core logic for the auto
tuning, and the API for DAMOS users in the kernel space. The second
patch implements basic file operations of DAMON sysfs directories and
files that will be used for setting the goals and providing the
feedback. The third patch connects the quota goals files inputs to the
DAMOS core logic. Finally the fourth patch implements a dedicated DAMOS
sysfs command for efficiently committing the quota goals feedback.
Two patches for simple tests of the logic and interfaces follow. The
fifth patch implements the core logic unit test. The sixth patch
implements a selftest for the DAMON Sysfs interface for the goals.
Finally, three patches for documentation follows. The seventh patch
documents the design of the feature. The eighth patch updates the API
doc for the new sysfs files. The final eighth patch updates the usage
document for the features.
References
==========
[1] DAOS paper:
https://www.amazon.science/publications/daos-data-access-aware-operating-system
[2] Evaluation code:
3f884e6119
[3] Memory auto scaling RFC idea:
https://lore.kernel.org/damon/20231112195114.61474-1-sj@kernel.org/
[4] DAMON-based tiered memory management RFC idea:
https://lore.kernel.org/damon/20231112195602.61525-1-sj@kernel.org/
This patch (of 9)
Users can effectively control the upper-limit aggressiveness of DAMOS
schemes using the quota feature. The quota provides best result under the
limit by prioritizing regions based on the access pattern. That said,
finding the best value, which could depend on dynamic characteristics of
the system and the workloads, is still challenging.
Implement a simple feedback-driven tuning mechanism and use it for
automatic tuning of DAMOS quota. The implementation allows users to
provide the feedback by setting a feedback score returning callback
function. Then DAMOS periodically calls the function back and adjusts the
quota based on the return value of the callback and current quota value.
Note that the absolute-value based time/size quotas still work as the
maximum hard limits of the scheme's aggressiveness. The feedback-driven
auto-tuned quota is applied only if it is not exceeding the manually set
maximum limits. Same for the scheme-target access pattern and filters
like other features.
[sj@kernel.org: document get_score_arg field of struct damos_quota]
Link: https://lkml.kernel.org/r/20231204170106.60992-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231130023652.50284-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231130023652.50284-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since zswap now writes back pages from memcg-specific LRUs, we now need a
new stat to show writebacks count for each memcg.
[nphamcs@gmail.com: rename ZSWP_WB to ZSWPWB]
Link: https://lkml.kernel.org/r/20231205193307.2432803-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-5-nphamcs@gmail.com
Suggested-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, we only have a single global LRU for zswap. This makes it
impossible to perform worload-specific shrinking - an memcg cannot
determine which pages in the pool it owns, and often ends up writing pages
from other memcgs. This issue has been previously observed in practice
and mitigated by simply disabling memcg-initiated shrinking:
https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u
This patch fully resolves the issue by replacing the global zswap LRU
with memcg- and NUMA-specific LRUs, and modify the reclaim logic:
a) When a store attempt hits an memcg limit, it now triggers a
synchronous reclaim attempt that, if successful, allows the new
hotter page to be accepted by zswap.
b) If the store attempt instead hits the global zswap limit, it will
trigger an asynchronous reclaim attempt, in which an memcg is
selected for reclaim in a round-robin-like fashion.
[nphamcs@gmail.com: use correct function for the onlineness check, use mem_cgroup_iter_break()]
Link: https://lkml.kernel.org/r/20231205195419.2563217-1-nphamcs@gmail.com
[nphamcs@gmail.com: drop the pool's reference at the end of the writeback step]
Link: https://lkml.kernel.org/r/20231206030627.4155634-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-4-nphamcs@gmail.com
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Co-developed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "workload-specific and memory pressure-driven zswap
writeback", v8.
There are currently several issues with zswap writeback:
1. There is only a single global LRU for zswap, making it impossible to
perform worload-specific shrinking - an memcg under memory pressure
cannot determine which pages in the pool it owns, and often ends up
writing pages from other memcgs. This issue has been previously
observed in practice and mitigated by simply disabling
memcg-initiated shrinking:
https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u
But this solution leaves a lot to be desired, as we still do not
have an avenue for an memcg to free up its own memory locked up in
the zswap pool.
2. We only shrink the zswap pool when the user-defined limit is hit.
This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed
ahead of time, as this depends on the workload (specifically, on
factors such as memory access patterns and compressibility of the
memory pages).
This patch series solves these issues by separating the global zswap LRU
into per-memcg and per-NUMA LRUs, and performs workload-specific (i.e
memcg- and NUMA-aware) zswap writeback under memory pressure. The new
shrinker does not have any parameter that must be tuned by the user, and
can be opted in or out on a per-memcg basis.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
This patch (of 6):
The interface of list_lru is based on the assumption that the list node
and the data it represents belong to the same allocated on the correct
node/memcg. While this assumption is valid for existing slab objects LRU
such as dentries and inodes, it is undocumented, and rather inflexible for
certain potential list_lru users (such as the upcoming zswap shrinker and
the THP shrinker). It has caused us a lot of issues during our
development.
This patch changes list_lru interface so that the caller must explicitly
specify numa node and memcg when adding and removing objects. The old
list_lru_add() and list_lru_del() are renamed to list_lru_add_obj() and
list_lru_del_obj(), respectively.
It also extends the list_lru API with a new function, list_lru_putback,
which undoes a previous list_lru_isolate call. Unlike list_lru_add, it
does not increment the LRU node count (as list_lru_isolate does not
decrement the node count). list_lru_putback also allows for explicit
memcg and NUMA node selection.
Link: https://lkml.kernel.org/r/20231130194023.4102148-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__mas_set_range() was created to shortcut resetting the maple state and a
debug check was added to the caller (the vma iterator) to ensure the
internal maple state remains safe to use. Move the debug check from the
vma iterator into the maple tree itself so other users do not incorrectly
use the advanced maple state modification.
Fallout from this change include a large amount of debug setup needed to
be moved to earlier in the header, and the maple_tree.h radix-tree test
code needed to move the inclusion of the header to after the atomic
define. None of those changes have functional changes.
Link: https://lkml.kernel.org/r/20231101171629.3612299-4-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Drop the pasid field, as all the information needed for sva domain
management has been moved to the newly added iommu_mm field.
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Tina Zhang <tina.zhang@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20231027000525.1278806-7-tina.zhang@intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Linus suggested that the kconfig here is confusing:
https://lore.kernel.org/all/CAHk-=wgUiAtiszwseM1p2fCJ+sC4XWQ+YN4TanFhUgvUqjr9Xw@mail.gmail.com/
Let's break it into three kconfigs controlling distinct things:
- CONFIG_IOMMU_MM_DATA controls if the mm_struct has the additional
fields for the IOMMU. Currently only PASID, but later patches store
a struct iommu_mm_data *
- CONFIG_ARCH_HAS_CPU_PASID controls if the arch needs the scheduling bit
for keeping track of the ENQCMD instruction. x86 will select this if
IOMMU_SVA is enabled
- IOMMU_SVA controls if the IOMMU core compiles in the SVA support code
for iommu driver use and the IOMMU exported API
This way ARM will not enable CONFIG_ARCH_HAS_CPU_PASID
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20231027000525.1278806-2-tina.zhang@intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Record and report more information to help us find the cause of the bug
and to help us correlate the error with other system events.
This patch adds recording and showing CPU number and timestamp at
allocation and free (controlled by CONFIG_KASAN_EXTRA_INFO). The
timestamps in the report use the same format and source as printk.
Error occurrence timestamp is already implicit in the printk log, and CPU
number is already shown by dump_stack_lvl, so there is no need to add it.
In order to record CPU number and timestamp at allocation and free,
corresponding members need to be added to the relevant data structures,
which will lead to increased memory consumption.
In Generic KASAN, members are added to struct kasan_track. Since in most
cases, alloc meta is stored in the redzone and free meta is stored in the
object or the redzone, memory consumption will not increase much.
In SW_TAGS KASAN and HW_TAGS KASAN, members are added to struct
kasan_stack_ring_entry. Memory consumption increases as the size of
struct kasan_stack_ring_entry increases (this part of the memory is
allocated by memblock), but since this is configurable, it is up to the
user to choose.
Link: https://lkml.kernel.org/r/VI1P193MB0752BD991325D10E4AB1913599BDA@VI1P193MB0752.EURP193.PROD.OUTLOOK.COM
Signed-off-by: Juntong Deng <juntong.deng@outlook.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To maintain the correct state, it is important to ensure that events for
the memory cgroup v2 are aligned with the sample cgroup codes.
Link: https://lkml.kernel.org/r/20231123071945.25811-4-ddrokosov@salutedevices.com
Signed-off-by: Dmitry Rokosov <ddrokosov@salutedevices.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are still some places where it does not be converted to folio, this
patch convert all of them to folio. And this patch also does some trival
cleanup to fix the code style problems.
Link: https://lkml.kernel.org/r/20231127084645.27017-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To check a page whether it is self-hosted needs to traverse the page table
(e.g. pmd_off_k()), however, we already have done this in the next
calling of vmemmap_remap_range(). Moving PageVmemmapSelfHosted() check to
vmemmap_pmd_entry() could simplify the code a bit.
Link: https://lkml.kernel.org/r/20231127084645.27017-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It is unnecessary to implement a series of dedicated page table walking
helpers since there is already a general one walk_page_range_novma(). So
use it to simplify the code.
Link: https://lkml.kernel.org/r/20231127084645.27017-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The 8782fb61cc ("mm: pagewalk: Fix race between unmap and page walker")
introduces an assertion to walk_page_range_novma() to make all the users
of page table walker is safe. However, the race only exists for walking
the user page tables. And it is ridiculous to hold a particular user mmap
write lock against the changes of the kernel page tables. So only assert
at least mmap read lock when walking the kernel page tables. And some
users matching this case could downgrade to a mmap read lock to relief the
contention of mmap lock of init_mm, it will be nicer in hugetlb (only
holding mmap read lock) in the next patch.
Link: https://lkml.kernel.org/r/20231127084645.27017-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap_atomic() has been deprecated in favor of kmap_local_page().
Therefore, replace kmap_atomic() with kmap_local_page() in swapfile.c.
kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only in !PREEMPT_RT kernels). The
kernel virtual addresses returned by these two API are only valid in the
context of the callers (i.e., they cannot be handed to other threads).
With kmap_local_page() the mappings are per thread and CPU local like in
kmap_atomic(); however, they can handle page-faults and can be called from
any context (including interrupts). The tasks that call kmap_local_page()
can be preempted and, when they are scheduled to run again, the kernel
virtual addresses are restored and are still valid.
In mm/swapfile.c, the blocks of code between the mappings and un-mappings
do not depend on the above-mentioned side effects of kmap_atomic(), so
that the mere replacements of the old API with the new one is all that is
required (i.e., there is no need to explicitly call pagefault_disable()
and/or preempt_disable()).
Link: https://lkml.kernel.org/r/20231127155452.586387-1-fabio.maria.de.francesco@linux.intel.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap_atomic() has been deprecated in favor of kmap_local_page().
Therefore, replace kmap_atomic() with kmap_local_page() in
zswap.c.
kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only in !PREEMPT_RT kernels). The
kernel virtual addresses returned by these two API are only valid in the
context of the callers (i.e., they cannot be handed to other threads).
With kmap_local_page() the mappings are per thread and CPU local like in
kmap_atomic(); however, they can handle page-faults and can be called from
any context (including interrupts). The tasks that call kmap_local_page()
can be preempted and, when they are scheduled to run again, the kernel
virtual addresses are restored and are still valid.
In mm/zswap.c, the blocks of code between the mappings and un-mappings do
not depend on the above-mentioned side effects of kmap_atomic(), so that
the mere replacements of the old API with the new one is all that is
required (i.e., there is no need to explicitly call pagefault_disable()
and/or preempt_disable()).
Link: https://lkml.kernel.org/r/20231127160058.586446-1-fabio.maria.de.francesco@linux.intel.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Chris Li <chrisl@kernel.org> (Google)
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When the system is under oom, it prints out the RSS information of each
process. However, we don't know the size of rss_anon, rss_file, and
rss_shmem.
To distinguish the memory occupied by anonymous or file mappings
or shmem, could help us identify the root cause of the oom.
So this patch adds RSS details, which refers to the /proc/<pid>/status[1].
It can help us know more about process memory usage.
Example of oom including the new rss_* fields:
[ 1630.902466] Tasks state (memory values in pages):
[ 1630.902870] [ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name
[ 1630.903619] [ 149] 0 149 486 288 0 288 0 36864 0 0 ash
[ 1630.904210] [ 156] 0 156 153531 153345 153345 0 0 1269760 0 0 mm_test
[1] commit 8cee852ec5 ("mm, procfs: breakdown RSS for anon, shmem and file in /proc/pid/status").
Link: https://lkml.kernel.org/r/202311231840181856667@zte.com.cn
Signed-off-by: Yong Wang <wang.yong12@zte.com.cn>
Reviewed-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Xuexin Jiang <jiang.xuexin@zte.com.cn>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This is a bug found not by any report but only by code observations.
When GUP sees a devpmd/devpud and if page==NULL is returned, it means a
fault is probably required. Here falling through when page==NULL can
cause unexpected behavior.
Fix both cases by catching the page==NULL cases with no_page_table().
Link: https://lkml.kernel.org/r/20231123180222.1048297-1-peterx@redhat.com
Fixes: 3565fce3a6 ("mm, x86: get_user_pages() for dax mappings")
Fixes: 080dbb618b ("mm/follow_page_mask: split follow_page_mask to smaller functions.")
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__alloc_pages_direct_reclaim() is called from slowpath allocation where
high atomic reserves can be unreserved after there is a progress in
reclaim and yet no suitable page is found. Later should_reclaim_retry()
gets called from slow path allocation to decide if the reclaim needs to be
retried before OOM kill path is taken.
should_reclaim_retry() checks the available(reclaimable + free pages)
memory against the min wmark levels of a zone and returns:
a) true, if it is above the min wmark so that slow path allocation will
do the reclaim retries.
b) false, thus slowpath allocation takes oom kill path.
should_reclaim_retry() can also unreserves the high atomic reserves **but
only after all the reclaim retries are exhausted.**
In a case where there are almost none reclaimable memory and free pages
contains mostly the high atomic reserves but allocation context can't use
these high atomic reserves, makes the available memory below min wmark
levels hence false is returned from should_reclaim_retry() leading the
allocation request to take OOM kill path. This can turn into a early oom
kill if high atomic reserves are holding lot of free memory and
unreserving of them is not attempted.
(early)OOM is encountered on a VM with the below state:
[ 295.998653] Normal free:7728kB boost:0kB min:804kB low:1004kB
high:1204kB reserved_highatomic:8192KB active_anon:4kB inactive_anon:0kB
active_file:24kB inactive_file:24kB unevictable:1220kB writepending:0kB
present:70732kB managed:49224kB mlocked:0kB bounce:0kB free_pcp:688kB
local_pcp:492kB free_cma:0kB
[ 295.998656] lowmem_reserve[]: 0 32
[ 295.998659] Normal: 508*4kB (UMEH) 241*8kB (UMEH) 143*16kB (UMEH)
33*32kB (UH) 7*64kB (UH) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB
0*4096kB = 7752kB
Per above log, the free memory of ~7MB exist in the high atomic reserves
is not freed up before falling back to oom kill path.
Fix it by trying to unreserve the high atomic reserves in
should_reclaim_retry() before __alloc_pages_direct_reclaim() can fallback
to oom kill path.
Link: https://lkml.kernel.org/r/1700823445-27531-1-git-send-email-quic_charante@quicinc.com
Fixes: 0aaa29a56e ("mm, page_alloc: reserve pageblocks for high-order atomic allocations on demand")
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Reported-by: Chris Goldsworthy <quic_cgoldswo@quicinc.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Chris Goldsworthy <quic_cgoldswo@quicinc.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Highatomic reserves are set to roughly 1% of zone for maximum and a
pageblock size for minimum. Encountered a system with the below
configuration:
Normal free:7728kB boost:0kB min:804kB low:1004kB high:1204kB
reserved_highatomic:8192KB managed:49224kB
On such systems, even a single pageblock makes highatomic reserves are set
to ~8% of the zone memory. This high value can easily exert pressure on
the zone.
Per discussion with Michal and Mel, it is not much useful to reserve the
memory for highatomic allocations on such small systems[1]. Since the
minimum size for high atomic reserves is always going to be a pageblock
size and if 1% of zone managed pages is going to be below pageblock size,
don't reserve memory for high atomic allocations. Thanks Michal for this
suggestion[2].
Since no memory is being reserved for high atomic allocations and if
respective allocation failures are seen, this patch can be reverted.
[1] https://lore.kernel.org/linux-mm/20231117161956.d3yjdxhhm4rhl7h2@techsingularity.net/
[2] https://lore.kernel.org/linux-mm/ZVYRJMUitykepLRy@tiehlicka/
Link: https://lkml.kernel.org/r/c3a2a48e2cfe08176a80eaf01c110deb9e918055.1700821416.git.quic_charante@quicinc.com
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: page_alloc: fixes for high atomic reserve
caluculations", v3.
The state of the system where the issue exposed shown in oom kill logs:
[ 295.998653] Normal free:7728kB boost:0kB min:804kB low:1004kB high:1204kB reserved_highatomic:8192KB active_anon:4kB inactive_anon:0kB active_file:24kB inactive_file:24kB unevictable:1220kB writepending:0kB present:70732kB managed:49224kB mlocked:0kB bounce:0kB free_pcp:688kBlocal_pcp:492kB free_cma:0kB
[ 295.998656] lowmem_reserve[]: 0 32
[ 295.998659] Normal: 508*4kB (UMEH) 241*8kB (UMEH) 143*16kB (UMEH)
33*32kB (UH) 7*64kB (UH) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 7752kB
From the above, it is seen that ~16MB of memory reserved for high atomic
reserves against the expectation of 1% reserves which is fixed in the 1st
patch.
Don't reserve the high atomic page blocks if 1% of zone memory size is
below a pageblock size.
This patch (of 2):
reserve_highatomic_pageblock() aims to reserve the 1% of the managed pages
of a zone, which is used for the high order atomic allocations.
It uses the below calculation to reserve:
static void reserve_highatomic_pageblock(struct page *page, ....) {
.......
max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
if (zone->nr_reserved_highatomic >= max_managed)
goto out;
zone->nr_reserved_highatomic += pageblock_nr_pages;
set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
out:
....
}
Since we are always appending the 1% of zone managed pages count to
pageblock_nr_pages, the minimum it is turning into 2 pageblocks as the
nr_reserved_highatomic is incremented/decremented in pageblock sizes.
Encountered a system(actually a VM running on the Linux kernel) with the
below zone configuration:
Normal free:7728kB boost:0kB min:804kB low:1004kB high:1204kB
reserved_highatomic:8192KB managed:49224kB
The existing calculations making it to reserve the 8MB(with pageblock size
of 4MB) i.e. 16% of the zone managed memory. Reserving such high amount
of memory can easily exert memory pressure in the system thus may lead
into unnecessary reclaims till unreserving of high atomic reserves.
Since high atomic reserves are managed in pageblock size granules, as
MIGRATE_HIGHATOMIC is set for such pageblock, fix the calculations for
high atomic reserves as, minimum is pageblock size , maximum is
approximately 1% of the zone managed pages.
Link: https://lkml.kernel.org/r/cover.1700821416.git.quic_charante@quicinc.com
Link: https://lkml.kernel.org/r/1660034138397b82a0a8b6ae51cbe96bd583d89e.1700821416.git.quic_charante@quicinc.com
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Based on the init_unavailable_range() method and it's callee semantics no
multi-line info messages are intended to be printed to the console. Thus
append the '\n' symbol to the respective info string.
Link: https://lkml.kernel.org/r/20231122182419.30633-7-fancer.lancer@gmail.com
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Besides of the already described reasons the pages backended memory holes
might be persistent due to having memory mapped IO spaces behind those
ranges in the framework of flatmem kernel config. Add such note to the
init_unavailable_range() method kdoc in order to point out to one more
reason of having the function executed for such regions.
[fancer.lancer@gmail.com: update per Mike]
Link: https://lkml.kernel.org/r/20231202111855.18392-1-fancer.lancer@gmail.com
Link: https://lkml.kernel.org/r/20231122182419.30633-6-fancer.lancer@gmail.com
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
damon_split_region_at() should set access rate related fields of the
resulting regions same. It may forgotten, and actually there was the
mistake before. Test it with the unit test case for the function.
Link: https://lkml.kernel.org/r/20231119171529.66863-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Gow <davidgow@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently free meta can only be stored in object if the object is not
smaller than free meta.
After the improvement, when the object is smaller than free meta and SLUB
DEBUG is not enabled, it is possible to store part of the free meta in the
object, reducing the increased size of the red zone.
Example:
free meta size: 16 bytes
alloc meta size: 16 bytes
object size: 8 bytes
optimal redzone size (object_size <= 64): 16 bytes
Before improvement:
actual redzone size = alloc meta size + free meta size = 32 bytes
After improvement:
actual redzone size = alloc meta size + (free meta size - object size)
= 24 bytes
[juntong.deng@outlook.com: make kasan_metadata_size() adapt to the improved free meta storage]
Link: https://lkml.kernel.org/r/VI1P193MB0752675D6E0A2D16CE656F8299BAA@VI1P193MB0752.EURP193.PROD.OUTLOOK.COM
Link: https://lkml.kernel.org/r/VI1P193MB0752DE2CCD9046B5FED0AA8E99B5A@VI1P193MB0752.EURP193.PROD.OUTLOOK.COM
Signed-off-by: Juntong Deng <juntong.deng@outlook.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap_atomic() has been deprecated in favor of kmap_local_page().
Therefore, replace kmap_atomic() with kmap_local_page().
kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only in !PREEMPT_RT kernels). The
kernel virtual addresses returned by these two API are only valid in the
context of the callers (i.e., they cannot be handed to other threads).
With kmap_local_page() the mappings are per thread and CPU local like in
kmap_atomic(); however, they can handle page-faults and can be called from
any context (including interrupts). The tasks that call kmap_local_page()
can be preempted and, when they are scheduled to run again, the kernel
virtual addresses are restored and are still valid.
The code blocks between the mappings and un-mappings do not rely on the
above-mentioned side effects of kmap_atomic(), so that mere replacements
of the old API with the new one is all that they require (i.e., there is
no need to explicitly call pagefault_disable() and/or preempt_disable()).
Link: https://lkml.kernel.org/r/20231120142836.7219-1-fabio.maria.de.francesco@linux.intel.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap_atomic() has been deprecated in favor of kmap_local_page().
Therefore, replace kmap_atomic() with kmap_local_page().
kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only in !PREEMPT_RT kernels). The
kernel virtual addresses returned by these two API are only valid in the
context of the callers (i.e., they cannot be handed to other threads).
With kmap_local_page() the mappings are per thread and CPU local like in
kmap_atomic(); however, they can handle page-faults and can be called from
any context (including interrupts). The tasks that call kmap_local_page()
can be preempted and, when they are scheduled to run again, the kernel
virtual addresses are restored and are still valid.
The code blocks between the mappings and un-mappings don't rely on the
above-mentioned side effects of kmap_atomic(), so that mere replacements
of the old API with the new one is all that they require (i.e., there is
no need to explicitly call pagefault_disable() and/or preempt_disable()).
Link: https://lkml.kernel.org/r/20231120142640.7077-1-fabio.maria.de.francesco@linux.intel.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap_atomic() has been deprecated in favor of kmap_local_{folio,page}.
Therefore, replace kmap_atomic() with kmap_local_page in
__wp_page_copy_user().
kmap_atomic() disables preemption in !PREEMPT_RT kernels and
unconditionally disables also page-faults. My limited knowledge of the
implementation of __wp_page_copy_user() makes me think that the latter
side effect is still needed here, but kmap_local_page() is implemented not
to disable page-faults.
So, in addition to the conversion to local mapping, add explicit
pagefault_disable() / pagefault_enable() between mapping and un-mapping.
Link: https://lkml.kernel.org/r/20231120142418.6977-1-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap_atomic() has been deprecated in favor of kmap_local_page().
Therefore, replace kmap_atomic() with kmap_local_page() in
calc_checksum().
kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only in !PREEMPT_RT kernels). The
kernel virtual addresses returned by these two API are only valid in the
context of the callers (i.e., they cannot be handed to other threads).
With kmap_local_page() the mappings are per thread and CPU local like in
kmap_atomic(); however, they can handle page-faults and can be called from
any context (including interrupts). The tasks that call kmap_local_page()
can be preempted and, when they are scheduled to run again, the kernel
virtual addresses are restored and are still valid.
In calc_checksum(), the block of code between the mapping and un-mapping
does not depend on the above-mentioned side effects of kmap_aatomic(), so
that a mere replacements of the old API with the new one is all that is
required (i.e., there is no need to explicitly call pagefault_disable()
and/or preempt_disable()).
Link: https://lkml.kernel.org/r/20231120141855.6761-1-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmap_atomic() has been deprecated in favor of kmap_local_page().
Therefore, replace kmap_atomic() with kmap_local_page() in memcmp_pages().
kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only in !PREEMPT_RT kernels). The
kernel virtual addresses returned by these two API are only valid in the
context of the callers (i.e., they cannot be handed to other threads).
With kmap_local_page() the mappings are per thread and CPU local like in
kmap_atomic(); however, they can handle page-faults and can be called from
any context (including interrupts). The tasks that call kmap_local_page()
can be preempted and, when they are scheduled to run again, the kernel
virtual addresses are restored and are still valid.
In memcmp_pages(), the block of code between the mapping and un-mapping
does not depend on the above-mentioned side effects of kmap_aatomic(), so
that mere replacements of the old API with the new one is all that is
required (i.e., there is no need to explicitly call pagefault_disable()
and/or preempt_disable()).
Link: https://lkml.kernel.org/r/20231120141554.6612-1-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vmem_altmap_free() and vmem_altmap_offset() could be utlized without
CONFIG_ZONE_DEVICE enabled. For example,
mm/memory_hotplug.c:__add_pages() relies on that. The altmap is no longer
restricted to ZONE_DEVICE handling, but instead depends on
CONFIG_SPARSEMEM_VMEMMAP.
When CONFIG_SPARSEMEM_VMEMMAP is disabled, these functions are defined as
inline stubs, ensuring compatibility with configurations that do not use
sparsemem vmemmap. Without it, lkp reported the following:
ld: arch/x86/mm/init_64.o: in function `remove_pagetable':
init_64.c:(.meminit.text+0xfc7): undefined reference to
`vmem_altmap_free'
Link: https://lkml.kernel.org/r/20231120145354.308999-4-sumanthk@linux.ibm.com
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202311180545.VeyRXEDq-lkp@intel.com/
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Evict alloc/free stack traces from the stack depot for Generic KASAN once
they are evicted from the quaratine.
For auxiliary stack traces, evict the oldest stack trace once a new one is
saved (KASAN only keeps references to the last two).
Also evict all saved stack traces on krealloc.
To avoid double-evicting and mis-evicting stack traces (in case KASAN's
metadata was corrupted), reset KASAN's per-object metadata that stores
stack depot handles when the object is initialized and when it's evicted
from the quarantine.
Note that stack_depot_put is no-op if the handle is 0.
Link: https://lkml.kernel.org/r/5cef104d9b842899489b4054fe8d1339a71acee0.1700502145.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When both KASAN and slub_debug are enabled, when a free object is being
prepared in setup_object, slub_debug poisons the object data before KASAN
initializes its per-object metadata.
Right now, in setup_object, KASAN only initializes the alloc metadata,
which is always stored outside of the object. slub_debug is aware of this
and it skips poisoning and checking that memory area.
However, with the following patch in this series, KASAN also starts
initializing its free medata in setup_object. As this metadata might be
stored within the object, this initialization might overwrite the
slub_debug poisoning. This leads to slub_debug reports.
Thus, skip checking slub_debug poisoning of the object data area that
overlaps with the in-object KASAN free metadata.
Also make slub_debug poisoning of tail kmalloc redzones more precise when
KASAN is enabled: slub_debug can still poison and check the tail kmalloc
allocation area that comes after the KASAN free metadata.
Link: https://lkml.kernel.org/r/20231122231202.121277-1-andrey.konovalov@linux.dev
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Marco Elver <elver@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Make tag-based KASAN modes evict stack traces from the stack depot once
they are evicted from the stack ring.
Internally, pass STACK_DEPOT_FLAG_GET to stack_depot_save_flags (via
kasan_save_stack) to increment the refcount when saving a new entry to
stack ring and call stack_depot_put when removing an entry from stack
ring.
Link: https://lkml.kernel.org/r/b4773e5c1b0b9df6826ec0b65c1923feadfa78e5.1700502145.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Check the object size when looking up entries in the stack ring.
If the size of the object for which a report is being printed does not
match the size of the object for which a stack trace has been saved in the
stack ring, the saved stack trace is irrelevant.
Link: https://lkml.kernel.org/r/68c6948175aadd7e7e7deea61725103d64a4528f.1700502145.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Remove the atomic accesses to entry fields in save_stack_info and
kasan_complete_mode_report_info for tag-based KASAN modes.
These atomics are not required, as the read/write lock prevents the
entries from being read (in kasan_complete_mode_report_info) while being
written (in save_stack_info) and the try_cmpxchg prevents the same entry
from being rewritten (in save_stack_info) in the unlikely case of wrapping
during writing.
Link: https://lkml.kernel.org/r/29f59126d9845c5257b6c29cd7ad113b16f19f47.1700502145.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Change the bool can_alloc argument of __stack_depot_save to a u32
argument that accepts a set of flags.
The following patch will add another flag to stack_depot_save_flags
besides the existing STACK_DEPOT_FLAG_CAN_ALLOC.
Also rename the function to stack_depot_save_flags, as
__stack_depot_save is a cryptic name,
Link: https://lkml.kernel.org/r/645fa15239621eebbd3a10331e5864b718839512.1700502145.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Make KMSAN use stack_depot_save instead of __stack_depot_save, as it
always passes true to __stack_depot_save as the last argument.
Link: https://lkml.kernel.org/r/18092240699efdc6acd78b51e41ea782953e6c8d.1700502145.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Change /sys/kernel/debug/kmemleak report format slightly, adding
"(extra info)" to the backtrace header:
from: " backtrace:"
to: " backtrace (crc <cksum>):"
The <cksum> allows a user to see recurring backtraces without
detailed/careful reading of multiline stacks. So after cycling
kmemleak-test a few times, I know some leaks are repeating.
bash-5.2# grep backtrace /sys/kernel/debug/kmemleak | wc
62 186 1792
bash-5.2# grep backtrace /sys/kernel/debug/kmemleak | sort -u | wc
37 111 1067
syzkaller parses kmemleak for "unreferenced object" only, so is
unaffected by this change. Other github repos are moribund.
Link: https://lkml.kernel.org/r/20231116224318.124209-3-jim.cromie@gmail.com
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "tweak kmemleak report format".
These 2 patches make minor changes to the report:
1st strips "age <increasing>" from output. This makes the output
idempotent; unchanging until a new leak is reported.
2nd adds the backtrace.checksum to the "backtrace:" line. This lets a
user see repeats without actually reading the whole backtrace. So now
the backtrace line looks like this:
backtrace (crc 603070071):
I surveyed for un-wanted effects upon users:
Syzkaller parses kmemleak in executor/common_linux.h:
static void check_leaks(char** frames, int nframes)
It just counts occurrences of "unreferenced object", specifically it
does not look for "age", nor would it choke on "crc" being added.
github has 3 repos with "kmemleak" mentioned, all are moribund.
gitlab has 0 hits on "kmemleak".
This patch (of 2):
Displaying age is pretty, but counter-productive; it changes with
current-time, so it surrenders idempotency of the output, which breaks
simple hash-based cataloging of the records by the user.
The trouble: sequential reads, wo new leaks, get new results:
:#> sum /sys/kernel/debug/kmemleak
53439 74 /sys/kernel/debug/kmemleak
:#> sum /sys/kernel/debug/kmemleak
59066 74 /sys/kernel/debug/kmemleak
and age is why (nothing else changes):
:#> grep -v age /sys/kernel/debug/kmemleak | sum
58894 67
:#> grep -v age /sys/kernel/debug/kmemleak | sum
58894 67
Since jiffies is already printed in the "comm" line, age adds nothing.
Notably, syzkaller reads kmemleak only for "unreferenced object", and
won't care about this reform of age-ism. A few moribund github repos
mention it, but don't compile.
Link: https://lkml.kernel.org/r/20231116224318.124209-1-jim.cromie@gmail.com
Link: https://lkml.kernel.org/r/20231116224318.124209-2-jim.cromie@gmail.com
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There were already assertions that we were not passing a tail page to
error_remove_page(), so make the compiler enforce that by converting
everything to pass and use a folio.
Link: https://lkml.kernel.org/r/20231117161447.2461643-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Both callers now have a folio, so pass it in. Nothing downstream was
expecting a tail page; that's asserted in generic_error_remove_page(), for
example.
Link: https://lkml.kernel.org/r/20231117161447.2461643-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This function was already explicitly calling compound_head();
unfortunately the compiler can't know that and elide the redundant calls
to compound_head() buried in page_mapping(), unlock_page(), etc. Switch
to using a folio, which does let us elide these calls.
Link: https://lkml.kernel.org/r/20231117161447.2461643-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All three callers now have a folio; pass it in instead of the page.
Saves five calls to compound_head().
Link: https://lkml.kernel.org/r/20231117161447.2461643-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Replaces three hidden calls to compound_head() with one visible one.
Link: https://lkml.kernel.org/r/20231117161447.2461643-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Convert aops->error_remove_page to ->error_remove_folio".
This is a memory-failure patch series which converts a lot of uses of page
APIs into folio APIs with the usual benefits.
This patch (of 6):
Replaces three hidden calls to compound_head() with one visible one.
Fix up a few comments while I'm modifying this function.
Link: https://lkml.kernel.org/r/20231117161447.2461643-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231117161447.2461643-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
While investigating some complex memory allocation and free bugs
especially in multi-processes and multi-threads cases, from time to time,
I feel the free stack isn't sufficient as a page can be freed by processes
or threads other than the one allocating it. And other processes and
threads which free the page often have the exactly same free stack with
the one allocating the page. We can't know who free the page only through
the free stack though the current page_owner does tell us the pid and tgid
of the one allocating the page. This makes the bug investigation often
hard.
So this patch adds free pid and tgid in page_owner, so that we can easily
figure out if the freeing is crossing processes or threads.
Link: https://lkml.kernel.org/r/20231114034202.73098-1-v-songbaohua@oppo.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Cc: Audra Mitchell <audra@redhat.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kassey Li <quic_yingangl@quicinc.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1. There is a "-1" missing in the page number calculation in
process_vm_rw_core. While this can't break anything, it can cause
unnecessary allocations in certain cases:
Consider handling an iovec ranging over PVM_MAX_PP_ARRAY_COUNT pages
that is also aligned to a page boundary. While pp_stack could hold
references to such an amount of pinned pages, nr_pages yields
(PVM_MAX_PP_ARRAY + 1) in process_vm_rw_core. Consequently, a larger
buffer is allocated with kmalloc for no reason.
For any page boundary aligned iovec that is a multiple of PAGE_SIZE
and larger than PVM_MAX_PP_ARRAY_COUNT pages, nr_pages will be too big
by 1 and thus kmalloc allocates excess space for one more pointer.
2. max_pages_per_loop is constant and there is no reason to have it as
a variable. A macro does the job just fine and saves memory.
3. Replaced "sizeof(struct pages *)" with "sizeof(struct page *)" to
have matching types for allocation and prevent confusion.
Link: https://lkml.kernel.org/r/20231111184859.44264-1-yjnworkstation@gmail.com
Signed-off-by: York Jasper Niebuhr <yjnworkstation@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With commit cf8e865810 ("arch: Remove Itanium (IA-64) architecture"),
there is no need to keep the IA64-specific vma expansion.
Clean up the IA64-specific vma expansion implementation.
Link: https://lkml.kernel.org/r/20231113124728.3974-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The duplication makes it seem like some work is required before uncharging
in the !PageHWPoison case. But it isn't, so we can simplify the code a
little.
Note the PageMemcgKmem check is redundant, but I've left it in as it
avoids an unnecessary function call.
Link: https://lkml.kernel.org/r/20231108164920.3401565-1-jackmanb@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers are now converted to call mapping_evict_folio().
Link: https://lkml.kernel.org/r/20231108182809.602073-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The only caller now has a folio, so pass it in and operate on it. Saves
many page->folio conversions and introduces only one folio->page
conversion when calling isolate_movable_page().
Link: https://lkml.kernel.org/r/20231108182809.602073-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We already have the folio and the mapping, so replace the call to
invalidate_inode_page() with mapping_evict_folio().
Link: https://lkml.kernel.org/r/20231108182809.602073-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert vmf->page to a folio as soon as we're going to use it. This fixes
a bug if the fault handler returns a tail page with hardware poison; tail
pages have an invalid page->index, so we would fail to unmap the page from
the page tables. We actually have to unmap the entire folio (or
mapping_evict_folio() will fail), so use unmap_mapping_folio() instead.
This also saves various calls to compound_head() hidden in lock_page(),
put_page(), etc.
Link: https://lkml.kernel.org/r/20231108182809.602073-3-willy@infradead.org
Fixes: 793917d997 ("mm/readahead: Add large folio readahead")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Fix fault handler's handling of poisoned tail pages".
Since introducing the ability to have large folios in the page cache, it's
been possible to have a hwpoisoned tail page returned from the fault
handler. We handle this situation poorly; failing to remove the affected
page from use.
This isn't a minimal patch to fix it, it's a full conversion of all the
code surrounding it.
This patch (of 6):
invalidate_inode_page() does very little beyond calling
mapping_evict_folio(). Move the check for mapping being NULL into
mapping_evict_folio() and make it available to the rest of the MM for use
in the next few patches.
Link: https://lkml.kernel.org/r/20231108182809.602073-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231108182809.602073-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Nobody now checks the return value from any of these functions, so
add an assertion at the beginning of the function and return void.
Link: https://lkml.kernel.org/r/20231108204605.745109-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Steve French <sfrench@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Simplify code pattern of 'folio->index + folio_nr_pages(folio)' by using
the existing helper folio_next_index() in filemap_get_folios_contig().
Link: https://lkml.kernel.org/r/20231107024635.4512-1-duminjie@vivo.com
Signed-off-by: Minjie Du <duminjie@vivo.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The MHP_MEMMAP_ON_MEMORY flag for hotplugged memory is restricted to
'memblock_size' chunks of memory being added. Adding a larger span of
memory precludes memmap_on_memory semantics.
For users of hotplug such as kmem, large amounts of memory might get added
from the CXL subsystem. In some cases, this amount may exceed the
available 'main memory' to store the memmap for the memory being added.
In this case, it is useful to have a way to place the memmap on the memory
being added, even if it means splitting the addition into memblock-sized
chunks.
Change add_memory_resource() to loop over memblock-sized chunks of memory
if caller requested memmap_on_memory, and if other conditions for it are
met. Teach try_remove_memory() to also expect that a memory range being
removed might have been split up into memblock sized chunks, and to loop
through those as needed.
This does preclude being able to use PUD mappings in the direct map; a
proposal to how this could be optimized in the future is laid out here[1].
[1]: https://lore.kernel.org/linux-mm/b6753402-2de9-25b2-36e9-eacd49752b19@redhat.com/
Link: https://lkml.kernel.org/r/20231107-vv-kmem_memmap-v10-2-1253ec050ed0@intel.com
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Fan Ni <fan.ni@samsung.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: use memmap_on_memory semantics for dax/kmem", v10.
The dax/kmem driver can potentially hot-add large amounts of memory
originating from CXL memory expanders, or NVDIMMs, or other 'device
memories'. There is a chance there isn't enough regular system memory
available to fit the memmap for this new memory. It's therefore
desirable, if all other conditions are met, for the kmem managed memory to
place its memmap on the newly added memory itself.
The main hurdle for accomplishing this for kmem is that memmap_on_memory
can only be done if the memory being added is equal to the size of one
memblock. To overcome this, allow the hotplug code to split an
add_memory() request into memblock-sized chunks, and try_remove_memory()
to also expect and handle such a scenario.
Patch 1 replaces an open-coded kmemdup()
Patch 2 teaches the memory_hotplug code to allow for splitting
add_memory() and remove_memory() requests over memblock sized chunks.
Patch 3 allows the dax region drivers to request memmap_on_memory
semantics. CXL dax regions default this to 'on', all others default to
off to keep existing behavior unchanged.
This patch (of 3):
A review of the memmap_on_memory modifications to add_memory_resource()
revealed an instance of an open-coded kmemdup(). Replace it with
kmemdup().
Link: https://lkml.kernel.org/r/20231107-vv-kmem_memmap-v10-0-1253ec050ed0@intel.com
Link: https://lkml.kernel.org/r/20231107-vv-kmem_memmap-v10-1-1253ec050ed0@intel.com
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Sanity check that makes sure the nodes cover all memory loops over
numa_meminfo to count the pages that have node id assigned by the
firmware, then loops again over memblock.memory to find the total amount
of memory and in the end checks that the difference between the total
memory and memory that covered by nodes is less than some threshold.
Worse, the loop over numa_meminfo calls __absent_pages_in_range() that
also partially traverses memblock.memory.
It's much simpler and more efficient to have a single traversal of
memblock.memory that verifies that amount of memory not covered by nodes
is less than a threshold.
Introduce memblock_validate_numa_coverage() that does exactly that and use
it instead of numa_meminfo_cover_memory().
Link: https://lkml.kernel.org/r/20231026020329.327329-1-zhiguangni01@gmail.com
Signed-off-by: Liam Ni <zhiguangni01@gmail.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bibo Mao <maobibo@loongson.cn>
Cc: Binbin Zhou <zhoubinbin@loongson.cn>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feiyang Chen <chenfeiyang@loongson.cn>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
I can observe an obvious tlb flush hotspot when splitting a pte-mapped THP
on my ARM64 server, and the distribution of this hotspot is as follows:
- 16.85% split_huge_page_to_list
+ 7.80% down_write
- 7.49% try_to_migrate
- 7.48% rmap_walk_anon
7.23% ptep_clear_flush
+ 1.52% __split_huge_page
The reason is that the split_huge_page_to_list() will build migration
entries for each subpage of a pte-mapped Anon THP by try_to_migrate(), or
unmap for file THP, and it will clear and tlb flush for each subpage's
pte. Moreover, the split_huge_page_to_list() will set TTU_SPLIT_HUGE_PMD
flag to ensure the THP is already a pte-mapped THP before splitting it to
some normal pages.
Actually, there is no need to flush tlb for each subpage immediately,
instead we can batch tlb flush for the pte-mapped THP to improve the
performance.
After this patch, we can see the batch tlb flush can improve the latency
obviously when running thpscale.
k6.5-base patched
Amean fault-both-1 1071.17 ( 0.00%) 901.83 * 15.81%*
Amean fault-both-3 2386.08 ( 0.00%) 1865.32 * 21.82%*
Amean fault-both-5 2851.10 ( 0.00%) 2273.84 * 20.25%*
Amean fault-both-7 3679.91 ( 0.00%) 2881.66 * 21.69%*
Amean fault-both-12 5916.66 ( 0.00%) 4369.55 * 26.15%*
Amean fault-both-18 7981.36 ( 0.00%) 6303.57 * 21.02%*
Amean fault-both-24 10950.79 ( 0.00%) 8752.56 * 20.07%*
Amean fault-both-30 14077.35 ( 0.00%) 10170.01 * 27.76%*
Amean fault-both-32 13061.57 ( 0.00%) 11630.08 * 10.96%*
Link: https://lkml.kernel.org/r/431d9fb6823036369dcb1d3b2f63732f01df21a7.1698488264.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In dup_mmap(), using __mt_dup() to duplicate the old maple tree and then
directly replacing the entries of VMAs in the new maple tree can result in
better performance. __mt_dup() uses DFS pre-order to duplicate the maple
tree, so it is efficient.
The average time complexity of __mt_dup() is O(n), where n is the number
of VMAs. The proof of the time complexity is provided in the commit log
that introduces __mt_dup(). After duplicating the maple tree, each
element is traversed and replaced (ignoring the cases of deletion, which
are rare). Since it is only a replacement operation for each element,
this process is also O(n).
Analyzing the exact time complexity of the previous algorithm is
challenging because each insertion can involve appending to a node,
pushing data to adjacent nodes, or even splitting nodes. The frequency of
each action is difficult to calculate. The worst-case scenario for a
single insertion is when the tree undergoes splitting at every level. If
we consider each insertion as the worst-case scenario, we can determine
that the upper bound of the time complexity is O(n*log(n)), although this
is a loose upper bound. However, based on the test data, it appears that
the actual time complexity is likely to be O(n).
As the entire maple tree is duplicated using __mt_dup(), if dup_mmap()
fails, there will be a portion of VMAs that have not been duplicated in
the maple tree. To handle this, we mark the failure point with
XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, stop
releasing VMAs that have not been duplicated after this point.
There is a "spawn" in byte-unixbench[1], which can be used to test the
performance of fork(). I modified it slightly to make it work with
different number of VMAs.
Below are the test results. The first row shows the number of VMAs. The
second and third rows show the number of fork() calls per ten seconds,
corresponding to next-20231006 and the this patchset, respectively. The
test results were obtained with CPU binding to avoid scheduler load
balancing that could cause unstable results. There are still some
fluctuations in the test results, but at least they are better than the
original performance.
21 121 221 421 821 1621 3221 6421 12821 25621 51221
112100 76261 54227 34035 20195 11112 6017 3161 1606 802 393
114558 83067 65008 45824 28751 16072 8922 4747 2436 1233 599
2.19% 8.92% 19.88% 34.64% 42.37% 44.64% 48.28% 50.17% 51.68% 53.74% 52.42%
[1] https://github.com/kdlucas/byte-unixbench/tree/master
Link: https://lkml.kernel.org/r/20231027033845.90608-11-zhangpeng.00@bytedance.com
Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com>
Suggested-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Mike Christie <michael.christie@oracle.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Demotion will migrate pages across nodes. Previously, only the global
demotion statistics were accounted for. Changed them to per-node
statistics, making it easier to observe where demotion occurs on each
node.
This will help to identify which nodes are under pressure.
This patch also make pgdemote_* behind CONFIG_NUMA_BALANCING, since
demotion is not available for !CONFIG_NUMA_BALANCING
With this patch, here is a sample where node0 node1 are DRAM,
node3 is PMEM:
Global stats:
$ grep demote /proc/vmstat
pgdemote_kswapd 254288
pgdemote_direct 113497
pgdemote_khugepaged 0
Per-node stats:
$ grep demote /sys/devices/system/node/node0/vmstat # demotion source
pgdemote_kswapd 68454
pgdemote_direct 83431
pgdemote_khugepaged 0
$ grep demote /sys/devices/system/node/node1/vmstat # demotion source
pgdemote_kswapd 185834
pgdemote_direct 30066
pgdemote_khugepaged 0
$ grep demote /sys/devices/system/node/node3/vmstat # demotion target
pgdemote_kswapd 0
pgdemote_direct 0
pgdemote_khugepaged 0
Link: https://lkml.kernel.org/r/20231103031450.1456523-1-lizhijian@fujitsu.com
Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When no corresponding memory region is found for the given pfn, return
NUMA_NO_NODE instead of -1. This improves code readability and aligns with
the existing logic of the memblock_search_pfn_nid() function's user.
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Link: https://lore.kernel.org/r/20231207131001.224914-1-ytcoode@gmail.com
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Currently we have a single function slab_free() handling both single
object freeing and bulk freeing with necessary hooks, the latter case
requiring slab_free_freelist_hook(). It should be however better to
distinguish the two use cases for the following reasons:
- code simpler to follow for the single object case
- better code generation - although inlining should eliminate the
slab_free_freelist_hook() for single object freeing in case no
debugging options are enabled, it seems it's not perfect. When e.g.
KASAN is enabled, we're imposing additional unnecessary overhead for
single object freeing.
- preparation to add percpu array caches in near future
Therefore, simplify slab_free() for the single object case by dropping
unnecessary parameters and calling only slab_free_hook() instead of
slab_free_freelist_hook(). Rename the bulk variant to slab_free_bulk()
and adjust callers accordingly.
While at it, flip (and document) slab_free_hook() return value so that
it returns true when the freeing can proceed, which matches the logic of
slab_free_freelist_hook() and is not confusingly the opposite.
Additionally we can simplify a bit by changing the tail parameter of
do_slab_free() when freeing a single object - instead of NULL we can set
it equal to head.
bloat-o-meter shows small code reduction with a .config that has KASAN
etc disabled:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-118 (-118)
Function old new delta
kmem_cache_alloc_bulk 1203 1196 -7
kmem_cache_free 861 835 -26
__kmem_cache_free 741 704 -37
kmem_cache_free_bulk 911 863 -48
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Currently, when __kmem_cache_alloc_bulk() fails, it frees back the
objects that were allocated before the failure, using
kmem_cache_free_bulk(). Because kmem_cache_free_bulk() calls the free
hooks (KASAN etc.) and those expect objects that were processed by the
post alloc hooks, slab_post_alloc_hook() is called before
kmem_cache_free_bulk().
This is wasteful, although not a big concern in practice for the rare
error path. But in order to efficiently handle percpu array batch refill
and free in the near future, we will also need a variant of
kmem_cache_free_bulk() that avoids the free hooks. So introduce it now
and use it for the failure path.
In case of failure we however still need to perform memcg uncharge so
handle that in a new memcg_slab_alloc_error_hook(). Thanks to Chengming
Zhou for noticing the missing uncharge.
As a consequence, __kmem_cache_alloc_bulk() no longer needs the objcg
parameter, remove it.
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The SLUB sysfs stats enabled CONFIG_SLUB_STATS have two deficiencies
identified wrt bulk alloc/free operations:
- Bulk allocations from cpu freelist are not counted. Add the
ALLOC_FASTPATH counter there.
- Bulk fastpath freeing will count a list of multiple objects with a
single FREE_FASTPATH inc. Add a stat_add() variant to count them all.
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now, if we suddenly remove a PMEM device(by calling unbind) which
contains FSDAX while programs are still accessing data in this device,
e.g.:
```
$FSSTRESS_PROG -d $SCRATCH_MNT -n 99999 -p 4 &
# $FSX_PROG -N 1000000 -o 8192 -l 500000 $SCRATCH_MNT/t001 &
echo "pfn1.1" > /sys/bus/nd/drivers/nd_pmem/unbind
```
it could come into an unacceptable state:
1. device has gone but mount point still exists, and umount will fail
with "target is busy"
2. programs will hang and cannot be killed
3. may crash with NULL pointer dereference
To fix this, we introduce a MF_MEM_PRE_REMOVE flag to let it know that we
are going to remove the whole device, and make sure all related processes
could be notified so that they could end up gracefully.
This patch is inspired by Dan's "mm, dax, pmem: Introduce
dev_pagemap_failure()"[1]. With the help of dax_holder and
->notify_failure() mechanism, the pmem driver is able to ask filesystem
on it to unmap all files in use, and notify processes who are using
those files.
Call trace:
trigger unbind
-> unbind_store()
-> ... (skip)
-> devres_release_all()
-> kill_dax()
-> dax_holder_notify_failure(dax_dev, 0, U64_MAX, MF_MEM_PRE_REMOVE)
-> xfs_dax_notify_failure()
`-> freeze_super() // freeze (kernel call)
`-> do xfs rmap
` -> mf_dax_kill_procs()
` -> collect_procs_fsdax() // all associated processes
` -> unmap_and_kill()
` -> invalidate_inode_pages2_range() // drop file's cache
`-> thaw_super() // thaw (both kernel & user call)
Introduce MF_MEM_PRE_REMOVE to let filesystem know this is a remove
event. Use the exclusive freeze/thaw[2] to lock the filesystem to prevent
new dax mapping from being created. Do not shutdown filesystem directly
if configuration is not supported, or if failure range includes metadata
area. Make sure all files and processes(not only the current progress)
are handled correctly. Also drop the cache of associated files before
pmem is removed.
[1]: https://lore.kernel.org/linux-mm/161604050314.1463742.14151665140035795571.stgit@dwillia2-desk3.amr.corp.intel.com/
[2]: https://lore.kernel.org/linux-xfs/169116275623.3187159.16862410128731457358.stg-ugh@frogsfrogsfrogs/
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
If a scheme is set to not applied to any monitoring target region for any
reasons including the target access pattern, quota, filters, or
watermarks, writing 'update_schemes_tried_regions' to 'state' DAMON sysfs
file can indefinitely hang. Fix the case by implementing a timeout for
the operation. The time limit is two apply intervals of each scheme.
Link: https://lkml.kernel.org/r/20231124213840.39157-1-sj@kernel.org
Fixes: 4d4e41b682 ("mm/damon/sysfs-schemes: do not update tried regions more than one DAMON snapshot")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
PTE_MARKER_UFFD_WP is a subconfig for userfaultfd. To make it clear,
switch to use menuconfig for userfaultfd.
Link: https://lkml.kernel.org/r/20231123224204.1060152-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Regions split function ('damon_split_region_at()') is called at the
beginning of an aggregation interval, and when DAMOS applying the actions
and charging quota. Because 'nr_accesses' fields of all regions are reset
at the beginning of each aggregation interval, and DAMOS was applying the
action at the end of each aggregation interval, there was no need to copy
the 'nr_accesses' field to the split-out region.
However, commit 42f994b714 ("mm/damon/core: implement scheme-specific
apply interval") made DAMOS applies action on its own timing interval.
Hence, 'nr_accesses' should also copied to split-out regions, but the
commit didn't. Fix it by copying it.
Link: https://lkml.kernel.org/r/20231119171529.66863-1-sj@kernel.org
Fixes: 42f994b714 ("mm/damon/core: implement scheme-specific apply interval")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In add_memory_resource(), creation of memory block devices occurs after
successful call to arch_add_memory(). However, creation of memory block
devices could fail. In that case, arch_remove_memory() is called to
perform necessary cleanup.
Currently with or without altmap support, arch_remove_memory() is always
passed with altmap set to NULL during error handling. This leads to
freeing of struct pages using free_pages(), eventhough the allocation
might have been performed with altmap support via
altmap_alloc_block_buf().
Fix the error handling by passing altmap in arch_remove_memory(). This
ensures the following:
* When altmap is disabled, deallocation of the struct pages array occurs
via free_pages().
* When altmap is enabled, deallocation occurs via vmem_altmap_free().
Link: https://lkml.kernel.org/r/20231120145354.308999-3-sumanthk@linux.ibm.com
Fixes: a08a2ae346 ("mm,memory_hotplug: allocate memmap from the added memory range")
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: <stable@vger.kernel.org> [5.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
From Documentation/core-api/memory-hotplug.rst:
When adding/removing/onlining/offlining memory or adding/removing
heterogeneous/device memory, we should always hold the mem_hotplug_lock
in write mode to serialise memory hotplug (e.g. access to global/zone
variables).
mhp_(de)init_memmap_on_memory() functions can change zone stats and
struct page content, but they are currently called w/o the
mem_hotplug_lock.
When memory block is being offlined and when kmemleak goes through each
populated zone, the following theoretical race conditions could occur:
CPU 0: | CPU 1:
memory_offline() |
-> offline_pages() |
-> mem_hotplug_begin() |
... |
-> mem_hotplug_done() |
| kmemleak_scan()
| -> get_online_mems()
| ...
-> mhp_deinit_memmap_on_memory() |
[not protected by mem_hotplug_begin/done()]|
Marks memory section as offline, | Retrieves zone_start_pfn
poisons vmemmap struct pages and updates | and struct page members.
the zone related data |
| ...
| -> put_online_mems()
Fix this by ensuring mem_hotplug_lock is taken before performing
mhp_init_memmap_on_memory(). Also ensure that
mhp_deinit_memmap_on_memory() holds the lock.
online/offline_pages() are currently only called from
memory_block_online/offline(), so it is safe to move the locking there.
Link: https://lkml.kernel.org/r/20231120145354.308999-2-sumanthk@linux.ibm.com
Fixes: a08a2ae346 ("mm,memory_hotplug: allocate memmap from the added memory range")
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Cc: <stable@vger.kernel.org> [5.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
syzbot reports oops in lockdep's __lock_acquire(), called from
__pte_offset_map_lock() called from filemap_map_pages(); or when I run the
repro, the oops comes in pmd_install(), called from filemap_map_pmd()
called from filemap_map_pages(), just before the __pte_offset_map_lock().
The problem is that filemap_map_pmd() has been assuming that when it finds
pmd_none(), a page table has already been prepared in prealloc_pte; and
indeed do_fault_around() has been careful to preallocate one there, when
it finds pmd_none(): but what if *pmd became none in between?
My 6.6 mods in mm/khugepaged.c, avoiding mmap_lock for write, have made it
easy for *pmd to be cleared while servicing a page fault; but even before
those, a huge *pmd might be zapped while a fault is serviced.
The difference in symptomatic stack traces comes from the "memory model"
in use: pmd_install() uses pmd_populate() uses page_to_pfn(): in some
models that is strict, and will oops on the NULL prealloc_pte; in other
models, it will construct a bogus value to be populated into *pmd, then
__pte_offset_map_lock() oops when trying to access split ptlock pointer
(or some other symptom in normal case of ptlock embedded not pointer).
Link: https://lore.kernel.org/linux-mm/20231115065506.19780-1-jose.pekkarinen@foxhound.fi/
Link: https://lkml.kernel.org/r/6ed0c50c-78ef-0719-b3c5-60c0c010431c@google.com
Fixes: f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-and-tested-by: syzbot+89edd67979b52675ddec@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-mm/0000000000005e44550608a0806c@google.com/
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>,
Cc: José Pekkarinen <jose.pekkarinen@foxhound.fi>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org> [5.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
set_track_prepare() will call __alloc_pages() which attempts to acquire
zone->lock(spinlocks), so move it outside object->lock(raw_spinlocks)
because it's not right to acquire spinlocks while holding raw_spinlocks in
RT mode.
Link: https://lkml.kernel.org/r/20231115082138.2649870-3-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Fix invalid wait context of set_track_prepare()".
Geert reported an invalid wait context[1] which is resulted by moving
set_track_prepare() inside kmemleak_lock. This is not allowed because in
RT mode, the spinlocks can be preempted but raw_spinlocks can not, so it
is not allowd to acquire spinlocks while holding raw_spinlocks. The
second patch fix same problem in kmemleak_update_trace().
This patch (of 2):
Move the initialisation of object back to__alloc_object() because
set_track_prepare() attempt to acquire zone->lock(spinlocks) while
__link_object is holding kmemleak_lock(raw_spinlocks). This is not right
for RT mode.
This reverts commit 245245c2ff ("mm/kmemleak: move the initialisation
of object to __link_object").
Link: https://lkml.kernel.org/r/20231115082138.2649870-1-liushixin2@huawei.com
Link: https://lkml.kernel.org/r/20231115082138.2649870-2-liushixin2@huawei.com
Fixes: 245245c2ff ("mm/kmemleak: move the initialisation of object to __link_object")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reported-by: Geert Uytterhoeven <geert+renesas@glider.be>
Closes: https://lore.kernel.org/linux-mm/CAMuHMdWj0UzwNaxUvcocTfh481qRJpOWwXxsJCTJfu1oCqvgdA@mail.gmail.com/ [1]
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We have a report of this WARN() triggering. Let's print the offending
swp_entry_t to help diagnosis.
Link: https://lkml.kernel.org/r/000000000000b0e576060a30ee3b@google.com
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The routine __vma_private_lock tests for the existence of a reserve map
associated with a private hugetlb mapping. A pointer to the reserve map
is in vma->vm_private_data. __vma_private_lock was checking the pointer
for NULL. However, it is possible that the low bits of the pointer could
be used as flags. In such instances, vm_private_data is not NULL and not
a valid pointer. This results in the null-ptr-deref reported by syzbot:
general protection fault, probably for non-canonical address 0xdffffc000000001d:
0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x00000000000000e8-0x00000000000000ef]
CPU: 0 PID: 5048 Comm: syz-executor139 Not tainted 6.6.0-rc7-syzkaller-00142-g88
8cf78c29e2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 1
0/09/2023
RIP: 0010:__lock_acquire+0x109/0x5de0 kernel/locking/lockdep.c:5004
...
Call Trace:
<TASK>
lock_acquire kernel/locking/lockdep.c:5753 [inline]
lock_acquire+0x1ae/0x510 kernel/locking/lockdep.c:5718
down_write+0x93/0x200 kernel/locking/rwsem.c:1573
hugetlb_vma_lock_write mm/hugetlb.c:300 [inline]
hugetlb_vma_lock_write+0xae/0x100 mm/hugetlb.c:291
__hugetlb_zap_begin+0x1e9/0x2b0 mm/hugetlb.c:5447
hugetlb_zap_begin include/linux/hugetlb.h:258 [inline]
unmap_vmas+0x2f4/0x470 mm/memory.c:1733
exit_mmap+0x1ad/0xa60 mm/mmap.c:3230
__mmput+0x12a/0x4d0 kernel/fork.c:1349
mmput+0x62/0x70 kernel/fork.c:1371
exit_mm kernel/exit.c:567 [inline]
do_exit+0x9ad/0x2a20 kernel/exit.c:861
__do_sys_exit kernel/exit.c:991 [inline]
__se_sys_exit kernel/exit.c:989 [inline]
__x64_sys_exit+0x42/0x50 kernel/exit.c:989
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Mask off low bit flags before checking for NULL pointer. In addition, the
reserve map only 'belongs' to the OWNER (parent in parent/child
relationships) so also check for the OWNER flag.
Link: https://lkml.kernel.org/r/20231114012033.259600-1-mike.kravetz@oracle.com
Reported-by: syzbot+6ada951e7c0f7bc8a71e@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-mm/00000000000078d1e00608d7878b@google.com/
Fixes: bf4916922c ("hugetlbfs: extend hugetlb_vma_lock to private VMAs")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: Edward Adam Davis <eadavis@qq.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Tom Rix <trix@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Inspection of kmem_cache_free() disassembly showed we could make the
fast path smaller by providing few more hints to the compiler, and
splitting the memcg_slab_free_hook() into an inline part that only
checks if there's work to do, and an out of line part doing the actual
uncharge.
bloat-o-meter results:
add/remove: 2/0 grow/shrink: 0/3 up/down: 286/-554 (-268)
Function old new delta
__memcg_slab_free_hook - 270 +270
__pfx___memcg_slab_free_hook - 16 +16
kfree 828 665 -163
kmem_cache_free 1116 948 -168
kmem_cache_free_bulk.part 1701 1478 -223
Checking kmem_cache_free() disassembly now shows the non-fastpath
cases are handled out of line, which should reduce instruction cache
usage.
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
With allocation fastpaths no longer divided between two .c files, we
have better inlining, however checking the disassembly of
kmem_cache_alloc() reveals we can do better to make the fastpaths
smaller and move the less common situations out of line or to separate
functions, to reduce instruction cache pressure.
- split memcg pre/post alloc hooks to inlined checks that use likely()
to assume there will be no objcg handling necessary, and non-inline
functions doing the actual handling
- add some more likely/unlikely() to pre/post alloc hooks to indicate
which scenarios should be out of line
- change gfp_allowed_mask handling in slab_post_alloc_hook() so the
code can be optimized away when kasan/kmsan/kmemleak is configured out
bloat-o-meter shows:
add/remove: 4/2 grow/shrink: 1/8 up/down: 521/-2924 (-2403)
Function old new delta
__memcg_slab_post_alloc_hook - 461 +461
kmem_cache_alloc_bulk 775 791 +16
__pfx_should_failslab.constprop - 16 +16
__pfx___memcg_slab_post_alloc_hook - 16 +16
should_failslab.constprop - 12 +12
__pfx_memcg_slab_post_alloc_hook 16 - -16
kmem_cache_alloc_lru 1295 1023 -272
kmem_cache_alloc_node 1118 817 -301
kmem_cache_alloc 1076 772 -304
kmalloc_node_trace 1149 838 -311
kmalloc_trace 1102 789 -313
__kmalloc_node_track_caller 1393 1080 -313
__kmalloc_node 1397 1082 -315
__kmalloc 1374 1059 -315
memcg_slab_post_alloc_hook 464 - -464
Note that gcc still decided to inline __memcg_pre_alloc_hook(), but the
code is out of line. Forcing noinline did not improve the results. As a
result the fastpaths are shorter and overal code size is reduced.
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
slab_alloc() is a thin wrapper around slab_alloc_node() with only one
caller. Replace with direct call of slab_alloc_node().
__kmem_cache_alloc_lru() itself is a thin wrapper with two callers,
so replace it with direct calls of slab_alloc_node() and
trace_kmem_cache_alloc().
This also makes sure _RET_IP_ has always the expected value and not
depending on inlining decisions.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This will eliminate a call between compilation units through
__kmem_cache_alloc_node() and allow better inlining of the allocation
fast path.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
In preparation for the next patch, move the kmalloc_slab() function to
the header, as it will have callers from two files, and make it inline.
To avoid unnecessary bloat, remove all size checks/warnings from
kmalloc_slab() as they just duplicate those in callers, especially after
recent changes to kmalloc_size_roundup(). We just need to adjust handling
of zero size in __do_kmalloc_node(). Also we can stop handling NULL
result from kmalloc_slab() there as that now cannot happen (unless
called too early during boot).
The size_index array becomes visible so rename it to a more specific
kmalloc_size_index.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This should result in better code. Currently kfree() makes a function
call between compilation units to __kmem_cache_free() which does its own
virt_to_slab(), throwing away the struct slab pointer we already had in
kfree(). Now it can be reused. Additionally kfree() can now inline the
whole SLUB freeing fastpath.
Also move over free_large_kmalloc() as the only callsites are now in
slub.c, and make it static.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The declaration and associated helpers are not used anywhere else
anymore.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
We don't share those between SLAB and SLUB anymore, so most memcg
related functions can be moved to slub.c proper.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
We don't share the hooks between two slab implementations anymore so
they can be moved away from the header. As part of the move, also move
should_failslab() from slab_common.c as the pre_alloc hook uses it.
This means slab.h can stop including fault-inject.h and kmemleak.h.
Fix up some files that were depending on the includes transitively.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The #include's are scattered at several places of the file, but it does
not seem this is needed to prevent any include loops (anymore?) so
consolidate them at the top. Also move the misplaced kmem_cache_init()
declaration away from the top.
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
mm/slab.h is the only place to include include/linux/slub_def.h which
has allowed switching between SLAB and SLUB. Now we can simply move the
contents over and remove slub_def.h.
Use this opportunity to fix up some whitespace (alignment) issues.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Nothing outside SLUB itself accesses the struct kmem_cache_cpu fields so
it does not need to be declared in slub_def.h. This allows also to move
enum stat_item.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
CONFIG_DEBUG_SLAB is going away with CONFIG_SLAB, so remove dead ifdefs
in mempool and dmapool code.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
In slab_common.c and slab.h headers, we can now remove all code behind
CONFIG_SLAB and CONFIG_DEBUG_SLAB ifdefs, and remove all CONFIG_SLUB
ifdefs.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
With SLAB removed, these are never true anymore so we can clean up.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Some struct slab fields are initialized differently for SLAB and SLUB so
we can simplify with SLUB being the only remaining allocator.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
With SLAB removed and SLUB the only remaining allocator, we can clean up
some code that was depending on the choice.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Remove CONFIG_SLAB, CONFIG_DEBUG_SLAB, CONFIG_SLAB_DEPRECATED and
everything in Kconfig files and mm/Makefile that depends on those. Since
SLUB is the only remaining allocator, remove the allocator choice, make
CONFIG_SLUB a "def_bool y" for now and remove all explicit dependencies
on SLUB or SLAB as it's now always enabled. Make every option's verbose
name and description refer to "the slab allocator" without refering to
the specific implementation. Do not rename the CONFIG_ option names yet.
Everything under #ifdef CONFIG_SLAB, and mm/slab.c is now dead code, all
code under #ifdef CONFIG_SLUB is now always compiled.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The SLAB implementation is going to be removed, and mm-api.rst currently
uses mm/slab.c to obtain kerneldocs for some API functions. Switch it to
mm/slub.c and move the relevant kerneldocs of exported functions from
one to the other. The rest of kerneldocs in slab.c is for static SLAB
implementation-specific functions that don't have counterparts in slub.c
and thus can be simply removed with the implementation.
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The current updated scheme (which this series implemented) is:
- node partial slabs: PG_Workingset && !frozen
- cpu partial slabs: !PG_Workingset && !frozen
- cpu slabs: !PG_Workingset && frozen
- full slabs: !PG_Workingset && !frozen
The most important change is that "frozen" bit is not set for the
cpu partial slabs anymore, __slab_free() will grab node list_lock
then check by !PG_Workingset that it's not on a node partial list.
And the "frozen" bit is still kept for the cpu slabs for performance,
since we don't need to grab node list_lock to check whether the
PG_Workingset is set or not if the "frozen" bit is set in __slab_free().
Update related documentations and comments in the source.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Christoph Lameter (Ampere) <cl@linux.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Since all partial slabs on the CPU partial list are not frozen anymore,
we don't unfreeze when moving cpu partial slabs to node partial list,
it's better to rename these functions.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Since the introduce of unfrozen slabs on cpu partial list, we don't
need to synchronize the slab frozen state under the node list_lock.
The caller of deactivate_slab() and the caller of __slab_free() won't
manipulate the slab list concurrently.
So we can get node list_lock in the last stage if we really need to
manipulate the slab list in this path.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now we will freeze slabs when moving them out of node partial list to
cpu partial list, this method needs two cmpxchg_double operations:
1. freeze slab (acquire_slab()) under the node list_lock
2. get_freelist() when pick used in ___slab_alloc()
Actually we don't need to freeze when moving slabs out of node partial
list, we can delay freezing to when use slab freelist in ___slab_alloc(),
so we can save one cmpxchg_double().
And there are other good points:
- The moving of slabs between node partial list and cpu partial list
becomes simpler, since we don't need to freeze or unfreeze at all.
- The node list_lock contention would be less, since we don't need to
freeze any slab under the node list_lock.
We can achieve this because there is no concurrent path would manipulate
the partial slab list except the __slab_free() path, which is now
serialized by slab_test_node_partial() under the list_lock.
Since the slab returned by get_partial() interfaces is not frozen anymore
and no freelist is returned in the partial_context, so we need to use the
introduced freeze_slab() to freeze it and get its freelist.
Similarly, the slabs on the CPU partial list are not frozen anymore,
we need to freeze_slab() on it before use.
We can now delete acquire_slab() as it became unused.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
We will have unfrozen slabs out of the node partial list later, so we
need a freeze_slab() function to freeze the partial slab and get its
freelist.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now the partially empty slub will be frozen when taken out of node partial
list, so the __slab_free() will know from "was_frozen" that the partially
empty slab is not on node partial list and is a cpu or cpu partial slab
of some cpu.
But we will change this, make partial slabs leave the node partial list
with unfrozen state, so we need to change __slab_free() to use the new
slab_test_node_partial() we just introduced.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Ever since the eventfd type was introduced back in 2007 in commit
e1ad7468c7 ("signal/timer/event: eventfd core") the eventfd_signal()
function only ever passed 1 as a value for @n. There's no point in
keeping that additional argument.
Link: https://lore.kernel.org/r/20231122-vfs-eventfd-signal-v2-2-bd549b14ce0c@kernel.org
Acked-by: Xu Yilun <yilun.xu@intel.com>
Acked-by: Andrew Donnellan <ajd@linux.ibm.com> # ocxl
Acked-by: Eric Farman <farman@linux.ibm.com> # s390
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Pages belonging to a page_pool (PP) instance must be freed through the
PP APIs in-order to correctly release any DMA mappings and release
refcnt on the DMA device when freeing PP instance. When PP release a
page (page_pool_release_page) the page->pp_magic value is cleared.
This patch detect a leaked PP page in free_page_is_bad() via
unexpected state of page->pp_magic value being PP_SIGNATURE.
We choose to report and treat it as a bad page. It would be possible
to release the page via returning it to the PP instance as the
page->pp pointer is likely still valid.
Notice this code is only activated when either compiled with
CONFIG_DEBUG_VM or boot cmdline debug_pagealloc=on, and
CONFIG_PAGE_POOL.
Reduced example output of leak with PP_SIGNATURE = dead000000000040:
BUG: Bad page state in process swapper/4 pfn:141fa6
page:000000006dbf8062 refcount:0 mapcount:0 mapping:0000000000000000 index:0x141fa6000 pfn:0x141fa6
flags: 0x2fffff80000000(node=0|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 002fffff80000000 dead000000000040 ffff88814888a000 0000000000000000
raw: 0000000141fa6000 0000000000000001 00000000ffffffff 0000000000000000
page dumped because: page_pool leak
[...]
Call Trace:
<IRQ>
dump_stack_lvl+0x32/0x50
bad_page+0x70/0xf0
free_unref_page_prepare+0x263/0x430
free_unref_page+0x34/0x130
mlx5e_free_rx_mpwqe+0x190/0x1c0 [mlx5_core]
mlx5e_post_rx_mpwqes+0x1ac/0x280 [mlx5_core]
mlx5e_napi_poll+0x12b/0x710 [mlx5_core]
? skb_free_head+0x4f/0x90
__napi_poll+0x2b/0x1c0
net_rx_action+0x27b/0x360
The advantage is the Call Trace directly points to the function
leaking the PP page, which in this case is an on purpose bug
introduced into the mlx5 driver to test this code change.
Currently PP will periodically in page_pool_release_retry()
printk warning "stalled pool shutdown" which cannot be directly
corrolated to leaking and might as well be a false positive
due to SKBs being stuck on a socket for an extended period.
After this patch we should be able to remove this printk.
Signed-off-by: Jesper Dangaard Brouer <hawk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZWBq0gAKCRCRxhvAZXjc
ot4EAP48O5ExMtQ3/AIkNDo+/9/Iz4g7bE1HYmdyiMPO3Ou/uwEAySwBXRJrFAsS
9omvkEdqrfyguW0xgoYwcxBdATVHnAE=
=ScR3
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7-rc3.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs fixes from Christian Brauner:
- Avoid calling back into LSMs from vfs_getattr_nosec() calls.
IMA used to query inode properties accessing raw inode fields without
dedicated helpers. That was finally fixed a few releases ago by
forcing IMA to use vfs_getattr_nosec() helpers.
The goal of the vfs_getattr_nosec() helper is to query for attributes
without calling into the LSM layer which would be quite problematic
because incredibly IMA is called from __fput()...
__fput()
-> ima_file_free()
What it does is to call back into the filesystem to update the file's
IMA xattr. Querying the inode without using vfs_getattr_nosec() meant
that IMA didn't handle stacking filesystems such as overlayfs
correctly. So the switch to vfs_getattr_nosec() is quite correct. But
the switch to vfs_getattr_nosec() revealed another bug when used on
stacking filesystems:
__fput()
-> ima_file_free()
-> vfs_getattr_nosec()
-> i_op->getattr::ovl_getattr()
-> vfs_getattr()
-> i_op->getattr::$WHATEVER_UNDERLYING_FS_getattr()
-> security_inode_getattr() # calls back into LSMs
Now, if that __fput() happens from task_work_run() of an exiting task
current->fs and various other pointer could already be NULL. So
anything in the LSM layer relying on that not being NULL would be
quite surprised.
Fix that by passing the information that this is a security request
through to the stacking filesystem by adding a new internal
ATT_GETATTR_NOSEC flag. Now the callchain becomes:
__fput()
-> ima_file_free()
-> vfs_getattr_nosec()
-> i_op->getattr::ovl_getattr()
-> if (AT_GETATTR_NOSEC)
vfs_getattr_nosec()
else
vfs_getattr()
-> i_op->getattr::$WHATEVER_UNDERLYING_FS_getattr()
- Fix a bug introduced with the iov_iter rework from last cycle.
This broke /proc/kcore by copying too much and without the correct
offset.
- Add a missing NULL check when allocating the root inode in
autofs_fill_super().
- Fix stable writes for multi-device filesystems (xfs, btrfs etc) and
the block device pseudo filesystem.
Stable writes used to be a superblock flag only, making it a per
filesystem property. Add an additional AS_STABLE_WRITES mapping flag
to allow for fine-grained control.
- Ensure that offset_iterate_dir() returns 0 after reaching the end of
a directory so it adheres to getdents() convention.
* tag 'vfs-6.7-rc3.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
libfs: getdents() should return 0 after reaching EOD
xfs: respect the stable writes flag on the RT device
xfs: clean up FS_XFLAG_REALTIME handling in xfs_ioctl_setattr_xflags
block: update the stable_writes flag in bdev_add
filemap: add a per-mapping stable writes flag
autofs: add: new_inode check in autofs_fill_super()
iov_iter: fix copy_page_to_iter_nofault()
fs: Pass AT_GETATTR_NOSEC flag to getattr interface function
Now we rely on the "frozen" bit to see if we should manipulate the
slab->slab_list, which will be changed in the following patch.
Instead we introduce another way to keep track of whether slub is on
the per-node partial list, here we reuse the PG_workingset bit.
We have to use the atomic set_bit() and clear_bit() variants and change
slab_unlock() to bit_spin_unlock() because when cmpxchg is not available
and PG_lock is used, there may be concurrent operations on the two bits.
Thanks to Mark Brown for reporting a hang and testing of a previous
version where the non-atomic operations were used.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
It is hard to find where mapping->private_lock, mapping->private_list and
mapping->private_data are used, due to private_XXX being a relatively
common name for variables and structure members in the kernel. To fit
with other members of struct address_space, rename them all to have an
i_ prefix. Tested with an allmodconfig build.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20231117215823.2821906-1-willy@infradead.org
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
folio_wait_stable waits for writeback to finish before modifying the
contents of a folio again, e.g. to support check summing of the data
in the block integrity code.
Currently this behavior is controlled by the SB_I_STABLE_WRITES flag
on the super_block, which means it is uniform for the entire file system.
This is wrong for the block device pseudofs which is shared by all
block devices, or file systems that can use multiple devices like XFS
witht the RT subvolume or btrfs (although btrfs currently reimplements
folio_wait_stable anyway).
Add a per-address_space AS_STABLE_WRITES flag to control the behavior
in a more fine grained way. The existing SB_I_STABLE_WRITES is kept
to initialize AS_STABLE_WRITES to the existing default which covers
most cases.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20231025141020.192413-2-hch@lst.de
Tested-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Commit c33c794828 ("mm: ptep_get() conversion") converted all (non-arch)
call sites to use ptep_get() instead of doing a direct dereference of the
pte. Full rationale can be found in that commit's log.
Since then, three new call sites have snuck in, which directly dereference
the pte, so let's fix those up.
Unfortunately there is no reliable automated mechanism to catch these; I'm
relying on a combination of Coccinelle (which throws up a lot of false
positives) and some compiler magic to force a compiler error on
dereference (While this approach finds dereferences, it also yields a
non-booting kernel so can't be committed).
Link: https://lkml.kernel.org/r/20231114154945.490401-1-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Matoro reported various userspace crashes on the parisc platform with kernel
6.6 and bisected it to commit 3033cd4307 ("parisc: Use generic mmap top-down
layout and brk randomization").
That commit switched parisc to use the common infrastructure to calculate
mmap_base, but missed that the mmap_base() function takes care for
architectures where the stack grows downwards only.
Fix the mmap_base() calculation to include the stack-grows-upwards case
and thus fix the userspace crashes on parisc.
Link: https://lkml.kernel.org/r/ZVH2qeS1bG7/1J/l@p100
Fixes: 3033cd4307 ("parisc: Use generic mmap top-down layout and brk randomization")
Signed-off-by: Helge Deller <deller@gmx.de>
Reported-by: matoro <matoro_mailinglist_kernel@matoro.tk>
Tested-by: matoro <matoro_mailinglist_kernel@matoro.tk>
Cc: <stable@vger.kernel.org> [6.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The function '__damos_filter_out()' causes DAMON to always filter out
schemes whose filter type is anon or memcg if its matching value is set
to false.
This commit addresses the issue by ensuring that '__damos_filter_out()'
no longer applies to filters whose type is 'anon' or 'memcg'.
Link: https://lkml.kernel.org/r/1699594629-3816-1-git-send-email-hyeongtak.ji@gmail.com
Fixes: ab9bda001b ("mm/damon/core: introduce address range type damos filter")
Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Objcg vectors attached to slab pages to store slab object ownership
information are allocated using gfp flags for the original slab
allocation. Depending on slab page order and the size of slab objects,
objcg vector can take several pages.
If the original allocation was done with the __GFP_NOFAIL flag, it
triggered a warning in the page allocation code. Indeed, order > 1 pages
should not been allocated with the __GFP_NOFAIL flag.
Fix this by simply dropping the __GFP_NOFAIL flag when allocating the
objcg vector. It effectively allows to skip the accounting of a single
slab object under a heavy memory pressure.
An alternative would be to implement the mechanism to fallback to order-0
allocations for accounting metadata, which is also not perfect because it
will increase performance penalty and memory footprint of the kernel
memory accounting under memory pressure.
Link: https://lkml.kernel.org/r/ZUp8ZFGxwmCx4ZFr@P9FQF9L96D.corp.robot.car
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Reported-by: Christoph Lameter <cl@linux.com>
Closes: https://lkml.kernel.org/r/6b42243e-f197-600a-5d22-56bd728a5ad8@gentwo.org
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
DAMON sysfs interface's before_damos_apply callback
(damon_sysfs_before_damos_apply()), which creates the DAMOS tried regions
for each DAMOS action applied region, is not handling the allocation
failure for the sysfs directory data. As a result, NULL pointer
derefeence is possible. Fix it by handling the case.
Link: https://lkml.kernel.org/r/20231106233408.51159-4-sj@kernel.org
Fixes: f1d13cacab ("mm/damon/sysfs: implement DAMOS tried regions update command")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [6.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
DAMOS tried regions sysfs directory allocation function
(damon_sysfs_scheme_regions_alloc()) is not handling the memory allocation
failure. In the case, the code will dereference NULL pointer. Handle the
failure to avoid such invalid access.
Link: https://lkml.kernel.org/r/20231106233408.51159-3-sj@kernel.org
Fixes: 9277d0367b ("mm/damon/sysfs-schemes: implement scheme region directory")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [6.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/damon/sysfs: fix unhandled return values".
Some of DAMON sysfs interface code is not handling return values from some
functions. As a result, confusing user input handling or NULL-dereference
is possible. Check those properly.
This patch (of 3):
damon_sysfs_update_target() returns error code for failures, but its
caller, damon_sysfs_set_targets() is ignoring that. The update function
seems making no critical change in case of such failures, but the behavior
will look like DAMON sysfs is silently ignoring or only partially
accepting the user input. Fix it.
Link: https://lkml.kernel.org/r/20231106233408.51159-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231106233408.51159-2-sj@kernel.org
Fixes: 19467a950b ("mm/damon/sysfs: remove requested targets when online-commit inputs")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
While qualifiying the 6.4 release, the following warning was detected in
messages:
vmstat_refresh: nr_file_hugepages -15664
The warning is caused by the incorrect updating of the NR_FILE_THPS
counter in the function split_huge_page_to_list. The if case is checking
for folio_test_swapbacked, but the else case is missing the check for
folio_test_pmd_mappable. The other functions that manipulate the counter
like __filemap_add_folio and filemap_unaccount_folio have the
corresponding check.
I have a test case, which reproduces the problem. It can be found here:
https://github.com/sroeschus/testcase/blob/main/vmstat_refresh/madv.c
The test case reproduces on an XFS filesystem. Running the same test
case on a BTRFS filesystem does not reproduce the problem.
AFAIK version 6.1 until 6.6 are affected by this problem.
[akpm@linux-foundation.org: whitespace fix]
[shr@devkernel.io: test for folio_test_pmd_mappable()]
Link: https://lkml.kernel.org/r/20231108171517.2436103-1-shr@devkernel.io
Link: https://lkml.kernel.org/r/20231106181918.1091043-1-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Co-debugged-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The "err" variable is not initialized if damon_target_has_pid(ctx) is
false and sys_target->regions->nr is zero.
Link: https://lkml.kernel.org/r/739e6aaf-a634-4e33-98a8-16546379ec9f@moroto.mountain
Fixes: 0bcd216c4741 ("mm/damon/sysfs: update monitoring target regions for online input commit")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce several new KVM uAPIs to ultimately create a guest-first memory
subsystem within KVM, a.k.a. guest_memfd. Guest-first memory allows KVM
to provide features, enhancements, and optimizations that are kludgly
or outright impossible to implement in a generic memory subsystem.
The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which
similar to the generic memfd_create(), creates an anonymous file and
returns a file descriptor that refers to it. Again like "regular"
memfd files, guest_memfd files live in RAM, have volatile storage,
and are automatically released when the last reference is dropped.
The key differences between memfd files (and every other memory subystem)
is that guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
convert a guest memory area between the shared and guest-private states.
A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to
specify attributes for a given page of guest memory. In the long term,
it will likely be extended to allow userspace to specify per-gfn RWX
protections, including allowing memory to be writable in the guest
without it also being writable in host userspace.
The immediate and driving use case for guest_memfd are Confidential
(CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM.
For such use cases, being able to map memory into KVM guests without
requiring said memory to be mapped into the host is a hard requirement.
While SEV+ and TDX prevent untrusted software from reading guest private
data by encrypting guest memory, pKVM provides confidentiality and
integrity *without* relying on memory encryption. In addition, with
SEV-SNP and especially TDX, accessing guest private memory can be fatal
to the host, i.e. KVM must be prevent host userspace from accessing
guest memory irrespective of hardware behavior.
Long term, guest_memfd may be useful for use cases beyond CoCo VMs,
for example hardening userspace against unintentional accesses to guest
memory. As mentioned earlier, KVM's ABI uses userspace VMA protections to
define the allow guest protection (with an exception granted to mapping
guest memory executable), and similarly KVM currently requires the guest
mapping size to be a strict subset of the host userspace mapping size.
Decoupling the mappings sizes would allow userspace to precisely map
only what is needed and with the required permissions, without impacting
guest performance.
A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to DMA from or into guest memory).
guest_memfd is the result of 3+ years of development and exploration;
taking on memory management responsibilities in KVM was not the first,
second, or even third choice for supporting CoCo VMs. But after many
failed attempts to avoid KVM-specific backing memory, and looking at
where things ended up, it is quite clear that of all approaches tried,
guest_memfd is the simplest, most robust, and most extensible, and the
right thing to do for KVM and the kernel at-large.
The "development cycle" for this version is going to be very short;
ideally, next week I will merge it as is in kvm/next, taking this through
the KVM tree for 6.8 immediately after the end of the merge window.
The series is still based on 6.6 (plus KVM changes for 6.7) so it
will require a small fixup for changes to get_file_rcu() introduced in
6.7 by commit 0ede61d858 ("file: convert to SLAB_TYPESAFE_BY_RCU").
The fixup will be done as part of the merge commit, and most of the text
above will become the commit message for the merge.
Pending post-merge work includes:
- hugepage support
- looking into using the restrictedmem framework for guest memory
- introducing a testing mechanism to poison memory, possibly using
the same memory attributes introduced here
- SNP and TDX support
There are two non-KVM patches buried in the middle of this series:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
Add an "unmovable" flag for mappings that cannot be migrated under any
circumstance. KVM will use the flag for its upcoming GUEST_MEMFD support,
which will not support compaction/migration, at least not in the
foreseeable future.
Test AS_UNMOVABLE under folio lock as already done for the async
compaction/dirty folio case, as the mapping can be removed by truncation
while compaction is running. To avoid having to lock every folio with a
mapping, assume/require that unmovable mappings are also unevictable, and
have mapping_set_unmovable() also set AS_UNEVICTABLE.
Cc: Matthew Wilcox <willy@infradead.org>
Co-developed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We need all get_partial() related interfaces to return a slab, instead
of returning the freelist (or object).
Use the partial_context.object to return back freelist or object for
now. This patch shouldn't have any functional changes.
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The get_partial() interface used in ___slab_alloc() may return a single
object in the "kmem_cache_debug(s)" case, in which we will just return
the "freelist" object.
Move this handling up to prepare for later changes.
And the "pfmemalloc_match()" part is not needed for node partial slab,
since we already check this in the get_partial_node().
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Numerous memblock reservations at early boot may exhaust static
memblock.reserved array and it is unnoticed because most of the callers don't
check memblock_reserve() return value.
In this case the system will crash later, but the reason is hard to identify.
Replace return of an error with panic() when memblock.reserved is exhausted
before it can be resized.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEeOVYVaWZL5900a/pOQOGJssO/ZEFAmVJMC0QHHJwcHRAa2Vy
bmVsLm9yZwAKCRA5A4Ymyw79kZ3CCACgaHmlV5YimQ3le0yGkyoVfA1ZYMTZJiq3
umN9z/Vs/WQLz5yiCriEjG/a9dkaceMtrqON+/Lxu5U28/XdYe13lKAmpmPXQvc4
5iqfXHL3KZSBvzYNKIKZioLdWQWNvIQyGnYn1LBqqtcOCVLscbqatE9JmN2w39ny
TwbTBG7HcalxJ9suauwF+jqQWg2f+yJEOzqiNalNJO0GRxuO7qJdqoLB1zsvXJ9F
3StCBq2/QyeklX5UtDT5oBIldx0ZGccg20hFhNDzN0pipF8lDL7Io2wI5zjhuHWO
JmTCY3GAZ+yl16BKe2StryVxs28PtagLykEq/CdGk56jiyWGUuLI
=xf1W
-----END PGP SIGNATURE-----
Merge tag 'memblock-v6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock
Pull memblock update from Mike Rapoport:
"Report failures when memblock_can_resize is not set.
Numerous memblock reservations at early boot may exhaust static
memblock.reserved array and it is unnoticed because most of the
callers don't check memblock_reserve() return value.
In this case the system will crash later, but the reason is hard to
identify.
Replace return of an error with panic() when memblock.reserved is
exhausted before it can be resized"
* tag 'memblock-v6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock:
memblock: report failures when memblock_can_resize is not set
there's little I can say which isn't in the individual changelogs.
The lengthier patch series are
- "kdump: use generic functions to simplify crashkernel reservation in
arch", from Baoquan He. This is mainly cleanups and consolidation of
the "crashkernel=" kernel parameter handling.
- After much discussion, David Laight's "minmax: Relax type checks in
min() and max()" is here. Hopefully reduces some typecasting and the
use of min_t() and max_t().
- A group of patches from Oleg Nesterov which clean up and slightly fix
our handling of reads from /proc/PID/task/... and which remove
task_struct.therad_group.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZUQP9wAKCRDdBJ7gKXxA
jmOAAQDh8sxagQYocoVsSm28ICqXFeaY9Co1jzBIDdNesAvYVwD/c2DHRqJHEiS4
63BNcG3+hM9nwGJHb5lyh5m79nBMRg0=
=On4u
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2023-11-02-14-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
"As usual, lots of singleton and doubleton patches all over the tree
and there's little I can say which isn't in the individual changelogs.
The lengthier patch series are
- 'kdump: use generic functions to simplify crashkernel reservation
in arch', from Baoquan He. This is mainly cleanups and
consolidation of the 'crashkernel=' kernel parameter handling
- After much discussion, David Laight's 'minmax: Relax type checks in
min() and max()' is here. Hopefully reduces some typecasting and
the use of min_t() and max_t()
- A group of patches from Oleg Nesterov which clean up and slightly
fix our handling of reads from /proc/PID/task/... and which remove
task_struct.thread_group"
* tag 'mm-nonmm-stable-2023-11-02-14-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (64 commits)
scripts/gdb/vmalloc: disable on no-MMU
scripts/gdb: fix usage of MOD_TEXT not defined when CONFIG_MODULES=n
.mailmap: add address mapping for Tomeu Vizoso
mailmap: update email address for Claudiu Beznea
tools/testing/selftests/mm/run_vmtests.sh: lower the ptrace permissions
.mailmap: map Benjamin Poirier's address
scripts/gdb: add lx_current support for riscv
ocfs2: fix a spelling typo in comment
proc: test ProtectionKey in proc-empty-vm test
proc: fix proc-empty-vm test with vsyscall
fs/proc/base.c: remove unneeded semicolon
do_io_accounting: use sig->stats_lock
do_io_accounting: use __for_each_thread()
ocfs2: replace BUG_ON() at ocfs2_num_free_extents() with ocfs2_error()
ocfs2: fix a typo in a comment
scripts/show_delta: add __main__ judgement before main code
treewide: mark stuff as __ro_after_init
fs: ocfs2: check status values
proc: test /proc/${pid}/statm
compiler.h: move __is_constexpr() to compiler.h
...
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series "Fixes and cleanups to compaction".
- Joel Fernandes has a patchset ("Optimize mremap during mutual
alignment within PMD") which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested.
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series "Do not try to access unaccepted memory" Adrian Hunter
provides some fixups for the recently-added "unaccepted memory' feature.
To increase the feature's checking coverage. "Plug a few gaps where
RAM is exposed without checking if it is unaccepted memory".
- In the series "cleanups for lockless slab shrink" Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code.
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series "use refcount+RCU method to implement
lockless slab shrink".
- David Hildenbrand contributes some maintenance work for the rmap code
in the series "Anon rmap cleanups".
- Kefeng Wang does more folio conversions and some maintenance work in
the migration code. Series "mm: migrate: more folio conversion and
unification".
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series "Add and use bdev_getblk()".
- In the series "Use nth_page() in place of direct struct page
manipulation" Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames.
- In the series "mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO" has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of gigantic
pages are in use.
- Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
rationalization and folio conversions in the hugetlb code.
- Yin Fengwei has improved mlock()'s handling of large folios in the
series "support large folio for mlock"
- In the series "Expose swapcache stat for memcg v1" Liu Shixin has
added statistics for memcg v1 users which are available (and useful)
under memcg v2.
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named "MDWE
without inheritance".
- Kefeng Wang has provided the series "mm: convert numa balancing
functions to use a folio" which does what it says.
- In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
makes is possible for a process to propagate KSM treatment across
exec().
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use "high
bandwidth memory" in addition to Optane Data Center Persistent Memory
Modules (DCPMM). The series is named "memory tiering: calculate
abstract distance based on ACPI HMAT"
- In the series "Smart scanning mode for KSM" Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans.
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
series "mm: memcg: fix tracking of pending stats updates values".
- In the series "Implement IOCTL to get and optionally clear info about
PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
us to atomically read-then-clear page softdirty state. This is mainly
used by CRIU.
- Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
- a bunch of relatively minor maintenance tweaks to this code.
- Matthew Wilcox has increased the use of the VMA lock over file-backed
page faults in the series "Handle more faults under the VMA lock". Some
rationalizations of the fault path became possible as a result.
- In the series "mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
and folio conversions.
- In the series "various improvements to the GUP interface" Lorenzo
Stoakes has simplified and improved the GUP interface with an eye to
providing groundwork for future improvements.
- Andrey Konovalov has sent along the series "kasan: assorted fixes and
improvements" which does those things.
- Some page allocator maintenance work from Kemeng Shi in the series
"Two minor cleanups to break_down_buddy_pages".
- In thes series "New selftest for mm" Breno Leitao has developed
another MM self test which tickles a race we had between madvise() and
page faults.
- In the series "Add folio_end_read" Matthew Wilcox provides cleanups
and an optimization to the core pagecache code.
- Nhat Pham has added memcg accounting for hugetlb memory in the series
"hugetlb memcg accounting".
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series "Abstract vma_merge() and split_vma()".
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series "Fix page_owner's use of free timestamps".
- Lorenzo Stoakes has fixed the handling of new mappings of sealed files
in the series "permit write-sealed memfd read-only shared mappings".
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series "Batch hugetlb vmemmap modification operations".
- Some buffer_head folio conversions and cleanups from Matthew Wilcox in
the series "Finish the create_empty_buffers() transition".
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the series
"mm: PCP high auto-tuning".
- Roman Gushchin has contributed the patchset "mm: improve performance
of accounted kernel memory allocations" which improves their performance
by ~30% as measured by a micro-benchmark.
- folio conversions from Kefeng Wang in the series "mm: convert page
cpupid functions to folios".
- Some kmemleak fixups in Liu Shixin's series "Some bugfix about
kmemleak".
- Qi Zheng has improved our handling of memoryless nodes by keeping them
off the allocation fallback list. This is done in the series "handle
memoryless nodes more appropriately".
- khugepaged conversions from Vishal Moola in the series "Some
khugepaged folio conversions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
FgeUPAD1oasg6CP+INZvCj34waNxwAc=
=E+Y4
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
The ia64 architecture gets its well-earned retirement as planned,
now that there is one last (mostly) working release that will
be maintained as an LTS kernel.
The architecture specific system call tables are updated for
the added map_shadow_stack() syscall and to remove references
to the long-gone sys_lookup_dcookie() syscall.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmVC40IACgkQYKtH/8kJ
Uidhmw/9EX+aWSXGoObJ3fngaNSMw+PmrEuP8qEKBHxfKHcCdX3hc451Oh4GlhaQ
tru91pPwgNvN2/rfoKusxT+V4PemGIzfNni/04rp+P0kvmdw5otQ2yNhsQNsfVmq
XGWvkxF4P2GO6bkjjfR/1dDq7GtlyXtwwPDKeLbYb6TnJOZjtx+EAN27kkfSn1Ms
R4Sa3zJ+DfHUmHL5S9g+7UD/CZ5GfKNmIskI4Mz5GsfoUz/0iiU+Bge/9sdcdSJQ
kmbLy5YnVzfooLZ3TQmBFsO3iAMWb0s/mDdtyhqhTVmTUshLolkPYyKnPFvdupyv
shXcpEST2XJNeaDRnL2K4zSCdxdbnCZHDpjfl9wfioBg7I8NfhXKpf1jYZHH1de4
LXq8ndEFEOVQw/zSpYWfQq1sux8Jiqr+UK/ukbVeFWiGGIUs91gEWtPAf8T0AZo9
ujkJvaWGl98O1g5wmBu0/dAR6QcFJMDfVwbmlIFpU8O+MEaz6X8mM+O5/T0IyTcD
eMbAUjj4uYcU7ihKzHEv/0SS9Of38kzff67CLN5k8wOP/9NlaGZ78o1bVle9b52A
BdhrsAefFiWHp1jT6Y9Rg4HOO/TguQ9e6EWSKOYFulsiLH9LEFaB9RwZLeLytV0W
vlAgY9rUW77g1OJcb7DoNv33nRFuxsKqsnz3DEIXtgozo9CzbYI=
=H1vH
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull ia64 removal and asm-generic updates from Arnd Bergmann:
- The ia64 architecture gets its well-earned retirement as planned,
now that there is one last (mostly) working release that will be
maintained as an LTS kernel.
- The architecture specific system call tables are updated for the
added map_shadow_stack() syscall and to remove references to the
long-gone sys_lookup_dcookie() syscall.
* tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
hexagon: Remove unusable symbols from the ptrace.h uapi
asm-generic: Fix spelling of architecture
arch: Reserve map_shadow_stack() syscall number for all architectures
syscalls: Cleanup references to sys_lookup_dcookie()
Documentation: Drop or replace remaining mentions of IA64
lib/raid6: Drop IA64 support
Documentation: Drop IA64 from feature descriptions
kernel: Drop IA64 support from sig_fault handlers
arch: Remove Itanium (IA-64) architecture
When user input is committed online, DAMON sysfs interface is ignoring the
user input for the monitoring target regions. Such request is valid and
useful for fixed monitoring target regions-based monitoring ops like
'paddr' or 'fvaddr'.
Update the region boundaries as user specified, too. Note that the
monitoring results of the regions that overlap between the latest
monitoring target regions and the new target regions are preserved.
Treat empty monitoring target regions user request as a request to just
make no change to the monitoring target regions. Otherwise, users should
set the monitoring target regions same to current one for every online
input commit, and it could be challenging for dynamic monitoring target
regions update DAMON ops like 'vaddr'. If the user really need to remove
all monitoring target regions, they can simply remove the target and then
create the target again with empty target regions.
Link: https://lkml.kernel.org/r/20231031170131.46972-1-sj@kernel.org
Fixes: da87878010 ("mm/damon/sysfs: support online inputs update")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
damon_sysfs_set_targets(), which updates the targets of the context for
online commitment, do not remove targets that removed from the
corresponding sysfs files. As a result, more than intended targets of the
context can exist and hence consume memory and monitoring CPU resource
more than expected.
Fix it by removing all targets of the context and fill up again using the
user input. This could cause unnecessary memory dealloc and realloc
operations, but this is not a hot code path. Also, note that damon_target
is stateless, and hence no data is lost.
[sj@kernel.org: fix unnecessary monitoring results removal]
Link: https://lkml.kernel.org/r/20231028213353.45397-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231022210735.46409-2-sj@kernel.org
Fixes: da87878010 ("mm/damon/sysfs: support online inputs update")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: <stable@vger.kernel.org> [5.19.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
LKP reported smatch warning as below:
===================
smatch warnings:
mm/vmalloc.c:3689 vread_iter() error: we previously assumed 'vm' could be null (see line 3667)
......
06c8994626 @3667 size = vm ? get_vm_area_size(vm) : va_size(va);
......
06c8994626 @3689 else if (!(vm->flags & VM_IOREMAP))
^^^^^^^^^
Unchecked dereference
=====================
This is not a runtime bug because the possible null 'vm' in the
pointed place could only happen when flags == VMAP_BLOCK. However, the
case 'flags == VMAP_BLOCK' should never happen and has been detected
with WARN_ON. Please check vm_map_ram() implementation and the earlier
checking in vread_iter() at below:
~~~~~~~~~~~~~~~~~~~~~~~~~~
/*
* VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
* be set together with VMAP_RAM.
*/
WARN_ON(flags == VMAP_BLOCK);
if (!vm && !flags)
continue;
~~~~~~~~~~~~~~~~~~~~~~~~~~
So add checking on whether 'vm' could be null when dereferencing it in
vread_iter(). This mutes smatch complaint.
Link: https://lkml.kernel.org/r/ZTCURc8ZQE+KrTvS@MiWiFi-R3L-srv
Link: https://lkml.kernel.org/r/ZS/2k6DIMd0tZRgK@MiWiFi-R3L-srv
Signed-off-by: Baoquan He <bhe@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202310171600.WCrsOwFj-lkp@intel.com/
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Philip Li <philip.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
During a zswap store attempt, the compression algorithm could fail (for
e.g due to the page containing incompressible random data). This is not
tracked in any of existing zswap counters, making it hard to monitor for
and investigate. We have run into this problem several times in our
internal investigations on zswap store failures.
This patch adds a dedicated debugfs counter for compression algorithm
failures.
Link: https://lkml.kernel.org/r/20231024234509.2680539-1-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Core & protocols
----------------
- Support usec resolution of TCP timestamps, enabled selectively by
a route attribute.
- Defer regular TCP ACK while processing socket backlog, try to send
a cumulative ACK at the end. Increase single TCP flow performance
on a 200Gbit NIC by 20% (100Gbit -> 120Gbit).
- The Fair Queuing (FQ) packet scheduler:
- add built-in 3 band prio / WRR scheduling
- support bypass if the qdisc is mostly idle (5% speed up for TCP RR)
- improve inactive flow reporting
- optimize the layout of structures for better cache locality
- Support TCP Authentication Option (RFC 5925, TCP-AO), a more modern
replacement for the old MD5 option.
- Add more retransmission timeout (RTO) related statistics to TCP_INFO.
- Support sending fragmented skbs over vsock sockets.
- Make sure we send SIGPIPE for vsock sockets if socket was shutdown().
- Add sysctl for ignoring lower limit on lifetime in Router
Advertisement PIO, based on an in-progress IETF draft.
- Add sysctl to control activation of TCP ping-pong mode.
- Add sysctl to make connection timeout in MPTCP configurable.
- Support rcvlowat and notsent_lowat on MPTCP sockets, to help apps
limit the number of wakeups.
- Support netlink GET for MDB (multicast forwarding), allowing user
space to request a single MDB entry instead of dumping the entire
table.
- Support selective FDB flushing in the VXLAN tunnel driver.
- Allow limiting learned FDB entries in bridges, prevent OOM attacks.
- Allow controlling via configfs netconsole targets which were created
via the kernel cmdline at boot, rather than via configfs at runtime.
- Support multiple PTP timestamp event queue readers with different
filters.
- MCTP over I3C.
BPF
---
- Add new veth-like netdevice where BPF program defines the logic
of the xmit routine. It can operate in L3 and L2 mode.
- Support exceptions - allow asserting conditions which should
never be true but are hard for the verifier to infer.
With some extra flexibility around handling of the exit / failure.
https://lwn.net/Articles/938435/
- Add support for local per-cpu kptr, allow allocating and storing
per-cpu objects in maps. Access to those objects operates on
the value for the current CPU. This allows to deprecate local
one-off implementations of per-CPU storage like
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE maps.
- Extend cgroup BPF sockaddr hooks for UNIX sockets. The use case is
for systemd to re-implement the LogNamespace feature which allows
running multiple instances of systemd-journald to process the logs
of different services.
- Enable open-coded task_vma iteration, after maple tree conversion
made it hard to directly walk VMAs in tracing programs.
- Add open-coded task, css_task and css iterator support.
One of the use cases is customizable OOM victim selection via BPF.
- Allow source address selection with bpf_*_fib_lookup().
- Add ability to pin BPF timer to the current CPU.
- Prevent creation of infinite loops by combining tail calls and
fentry/fexit programs.
- Add missed stats for kprobes to retrieve the number of missed kprobe
executions and subsequent executions of BPF programs.
- Inherit system settings for CPU security mitigations.
- Add BPF v4 CPU instruction support for arm32 and s390x.
Changes to common code
----------------------
- overflow: add DEFINE_FLEX() for on-stack definition of structs
with flexible array members.
- Process doc update with more guidance for reviewers.
Driver API
----------
- Simplify locking in WiFi (cfg80211 and mac80211 layers), use wiphy
mutex in most places and remove a lot of smaller locks.
- Create a common DPLL configuration API. Allow configuring
and querying state of PLL circuits used for clock syntonization,
in network time distribution.
- Unify fragmented and full page allocation APIs in page pool code.
Let drivers be ignorant of PAGE_SIZE.
- Rework PHY state machine to avoid races with calls to phy_stop().
- Notify DSA drivers of MAC address changes on user ports, improve
correctness of offloads which depend on matching port MAC addresses.
- Allow antenna control on injected WiFi frames.
- Reduce the number of variants of napi_schedule().
- Simplify error handling when composing devlink health messages.
Misc
----
- A lot of KCSAN data race "fixes", from Eric.
- A lot of __counted_by() annotations, from Kees.
- A lot of strncpy -> strscpy and printf format fixes.
- Replace master/slave terminology with conduit/user in DSA drivers.
- Handful of KUnit tests for netdev and WiFi core.
Removed
-------
- AppleTalk COPS.
- AppleTalk ipddp.
- TI AR7 CPMAC Ethernet driver.
Drivers
-------
- Ethernet high-speed NICs:
- Intel (100G, ice, idpf):
- add a driver for the Intel E2000 IPUs
- make CRC/FCS stripping configurable
- cross-timestamping for E823 devices
- basic support for E830 devices
- use aux-bus for managing client drivers
- i40e: report firmware versions via devlink
- nVidia/Mellanox:
- support 4-port NICs
- increase max number of channels to 256
- optimize / parallelize SF creation flow
- Broadcom (bnxt):
- enhance NIC temperature reporting
- support PAM4 speeds and lane configuration
- Marvell OcteonTX2:
- PTP pulse-per-second output support
- enable hardware timestamping for VFs
- Solarflare/AMD:
- conntrack NAT offload and offload for tunnels
- Wangxun (ngbe/txgbe):
- expose HW statistics
- Pensando/AMD:
- support PCI level reset
- narrow down the condition under which skbs are linearized
- Netronome/Corigine (nfp):
- support CHACHA20-POLY1305 crypto in IPsec offload
- Ethernet NICs embedded, slower, virtual:
- Synopsys (stmmac):
- add Loongson-1 SoC support
- enable use of HW queues with no offload capabilities
- enable PPS input support on all 5 channels
- increase TX coalesce timer to 5ms
- RealTek USB (r8152): improve efficiency of Rx by using GRO frags
- xen: support SW packet timestamping
- add drivers for implementations based on TI's PRUSS (AM64x EVM)
- nVidia/Mellanox Ethernet datacenter switches:
- avoid poor HW resource use on Spectrum-4 by better block selection
for IPv6 multicast forwarding and ordering of blocks in ACL region
- Ethernet embedded switches:
- Microchip:
- support configuring the drive strength for EMI compliance
- ksz9477: partial ACL support
- ksz9477: HSR offload
- ksz9477: Wake on LAN
- Realtek:
- rtl8366rb: respect device tree config of the CPU port
- Ethernet PHYs:
- support Broadcom BCM5221 PHYs
- TI dp83867: support hardware LED blinking
- CAN:
- add support for Linux-PHY based CAN transceivers
- at91_can: clean up and use rx-offload helpers
- WiFi:
- MediaTek (mt76):
- new sub-driver for mt7925 USB/PCIe devices
- HW wireless <> Ethernet bridging in MT7988 chips
- mt7603/mt7628 stability improvements
- Qualcomm (ath12k):
- WCN7850:
- enable 320 MHz channels in 6 GHz band
- hardware rfkill support
- enable IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS
to make scan faster
- read board data variant name from SMBIOS
- QCN9274: mesh support
- RealTek (rtw89):
- TDMA-based multi-channel concurrency (MCC)
- Silicon Labs (wfx):
- Remain-On-Channel (ROC) support
- Bluetooth:
- ISO: many improvements for broadcast support
- mark BCM4378/BCM4387 as BROKEN_LE_CODED
- add support for QCA2066
- btmtksdio: enable Bluetooth wakeup from suspend
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmU8XsYACgkQMUZtbf5S
Irv19RAAnud/24OOF5XMEJkIcYlnfqximh4XO6PujRSYkSkOUJdZTF6iJPgf3pSP
YpwoHYbYKHYfeOf8+3bTNESiQNSnoVmvmvwiS6/7lZ3behHUrGLQzW9Htc3EZyWH
2h6QkDZ5OOjfg0bwYSfp3vXkmMH2k8WE9Y0NvCkhcohqZi13Rmp14RnyPmNb2d1V
yZRYDMSM133KqE6gnBr1Ct65IEvnKeGlCUN2mTGqOJgdn6DZMsyxvtt0y4rmN7Ab
41+CgPU5SfxfbYpW+Dl2HJpgfte3WrC57KC6AM0PAPJzPmQWgeB/m9mjz/apj6Bg
bhsEIo7FdvbCnQm3yWPhK2OgCAcSwLr8jfGMU+Q+W4VnL5SRRR3Rm0zjsze+kHNP
OfqJgxzl3DpvoJqVBy1h5FGcZt0XHwhksm4cTxWqIahsF+veY0ECBXbuBBQx9XTF
Y7INfI8ulg7wISJs+CJfIClYkgOibTw2u8taBS5ikbtgxNqp5D4QqODn7UefQap1
PR/IDYODF+zRgmMJLeBqSa6fij6BkfOEDiOWak5kggBoZdtbtmeKI6tzze06CNdW
lWv1WEhRufxnwK+IuWsEkjhiMbs2WGLvkJ5JbgQV9BfqHfIfiqBCrcWtT/WbQnGt
lmU46CXh1t/FZEqbmK9h+8vsIIfrcDl6jb5npEiKPRG00vDKRTM=
=46nS
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core & protocols:
- Support usec resolution of TCP timestamps, enabled selectively by a
route attribute.
- Defer regular TCP ACK while processing socket backlog, try to send
a cumulative ACK at the end. Increase single TCP flow performance
on a 200Gbit NIC by 20% (100Gbit -> 120Gbit).
- The Fair Queuing (FQ) packet scheduler:
- add built-in 3 band prio / WRR scheduling
- support bypass if the qdisc is mostly idle (5% speed up for TCP RR)
- improve inactive flow reporting
- optimize the layout of structures for better cache locality
- Support TCP Authentication Option (RFC 5925, TCP-AO), a more modern
replacement for the old MD5 option.
- Add more retransmission timeout (RTO) related statistics to
TCP_INFO.
- Support sending fragmented skbs over vsock sockets.
- Make sure we send SIGPIPE for vsock sockets if socket was
shutdown().
- Add sysctl for ignoring lower limit on lifetime in Router
Advertisement PIO, based on an in-progress IETF draft.
- Add sysctl to control activation of TCP ping-pong mode.
- Add sysctl to make connection timeout in MPTCP configurable.
- Support rcvlowat and notsent_lowat on MPTCP sockets, to help apps
limit the number of wakeups.
- Support netlink GET for MDB (multicast forwarding), allowing user
space to request a single MDB entry instead of dumping the entire
table.
- Support selective FDB flushing in the VXLAN tunnel driver.
- Allow limiting learned FDB entries in bridges, prevent OOM attacks.
- Allow controlling via configfs netconsole targets which were
created via the kernel cmdline at boot, rather than via configfs at
runtime.
- Support multiple PTP timestamp event queue readers with different
filters.
- MCTP over I3C.
BPF:
- Add new veth-like netdevice where BPF program defines the logic of
the xmit routine. It can operate in L3 and L2 mode.
- Support exceptions - allow asserting conditions which should never
be true but are hard for the verifier to infer. With some extra
flexibility around handling of the exit / failure:
https://lwn.net/Articles/938435/
- Add support for local per-cpu kptr, allow allocating and storing
per-cpu objects in maps. Access to those objects operates on the
value for the current CPU.
This allows to deprecate local one-off implementations of per-CPU
storage like BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE maps.
- Extend cgroup BPF sockaddr hooks for UNIX sockets. The use case is
for systemd to re-implement the LogNamespace feature which allows
running multiple instances of systemd-journald to process the logs
of different services.
- Enable open-coded task_vma iteration, after maple tree conversion
made it hard to directly walk VMAs in tracing programs.
- Add open-coded task, css_task and css iterator support. One of the
use cases is customizable OOM victim selection via BPF.
- Allow source address selection with bpf_*_fib_lookup().
- Add ability to pin BPF timer to the current CPU.
- Prevent creation of infinite loops by combining tail calls and
fentry/fexit programs.
- Add missed stats for kprobes to retrieve the number of missed
kprobe executions and subsequent executions of BPF programs.
- Inherit system settings for CPU security mitigations.
- Add BPF v4 CPU instruction support for arm32 and s390x.
Changes to common code:
- overflow: add DEFINE_FLEX() for on-stack definition of structs with
flexible array members.
- Process doc update with more guidance for reviewers.
Driver API:
- Simplify locking in WiFi (cfg80211 and mac80211 layers), use wiphy
mutex in most places and remove a lot of smaller locks.
- Create a common DPLL configuration API. Allow configuring and
querying state of PLL circuits used for clock syntonization, in
network time distribution.
- Unify fragmented and full page allocation APIs in page pool code.
Let drivers be ignorant of PAGE_SIZE.
- Rework PHY state machine to avoid races with calls to phy_stop().
- Notify DSA drivers of MAC address changes on user ports, improve
correctness of offloads which depend on matching port MAC
addresses.
- Allow antenna control on injected WiFi frames.
- Reduce the number of variants of napi_schedule().
- Simplify error handling when composing devlink health messages.
Misc:
- A lot of KCSAN data race "fixes", from Eric.
- A lot of __counted_by() annotations, from Kees.
- A lot of strncpy -> strscpy and printf format fixes.
- Replace master/slave terminology with conduit/user in DSA drivers.
- Handful of KUnit tests for netdev and WiFi core.
Removed:
- AppleTalk COPS.
- AppleTalk ipddp.
- TI AR7 CPMAC Ethernet driver.
Drivers:
- Ethernet high-speed NICs:
- Intel (100G, ice, idpf):
- add a driver for the Intel E2000 IPUs
- make CRC/FCS stripping configurable
- cross-timestamping for E823 devices
- basic support for E830 devices
- use aux-bus for managing client drivers
- i40e: report firmware versions via devlink
- nVidia/Mellanox:
- support 4-port NICs
- increase max number of channels to 256
- optimize / parallelize SF creation flow
- Broadcom (bnxt):
- enhance NIC temperature reporting
- support PAM4 speeds and lane configuration
- Marvell OcteonTX2:
- PTP pulse-per-second output support
- enable hardware timestamping for VFs
- Solarflare/AMD:
- conntrack NAT offload and offload for tunnels
- Wangxun (ngbe/txgbe):
- expose HW statistics
- Pensando/AMD:
- support PCI level reset
- narrow down the condition under which skbs are linearized
- Netronome/Corigine (nfp):
- support CHACHA20-POLY1305 crypto in IPsec offload
- Ethernet NICs embedded, slower, virtual:
- Synopsys (stmmac):
- add Loongson-1 SoC support
- enable use of HW queues with no offload capabilities
- enable PPS input support on all 5 channels
- increase TX coalesce timer to 5ms
- RealTek USB (r8152): improve efficiency of Rx by using GRO frags
- xen: support SW packet timestamping
- add drivers for implementations based on TI's PRUSS (AM64x EVM)
- nVidia/Mellanox Ethernet datacenter switches:
- avoid poor HW resource use on Spectrum-4 by better block
selection for IPv6 multicast forwarding and ordering of blocks
in ACL region
- Ethernet embedded switches:
- Microchip:
- support configuring the drive strength for EMI compliance
- ksz9477: partial ACL support
- ksz9477: HSR offload
- ksz9477: Wake on LAN
- Realtek:
- rtl8366rb: respect device tree config of the CPU port
- Ethernet PHYs:
- support Broadcom BCM5221 PHYs
- TI dp83867: support hardware LED blinking
- CAN:
- add support for Linux-PHY based CAN transceivers
- at91_can: clean up and use rx-offload helpers
- WiFi:
- MediaTek (mt76):
- new sub-driver for mt7925 USB/PCIe devices
- HW wireless <> Ethernet bridging in MT7988 chips
- mt7603/mt7628 stability improvements
- Qualcomm (ath12k):
- WCN7850:
- enable 320 MHz channels in 6 GHz band
- hardware rfkill support
- enable IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS to
make scan faster
- read board data variant name from SMBIOS
- QCN9274: mesh support
- RealTek (rtw89):
- TDMA-based multi-channel concurrency (MCC)
- Silicon Labs (wfx):
- Remain-On-Channel (ROC) support
- Bluetooth:
- ISO: many improvements for broadcast support
- mark BCM4378/BCM4387 as BROKEN_LE_CODED
- add support for QCA2066
- btmtksdio: enable Bluetooth wakeup from suspend"
* tag 'net-next-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1816 commits)
net: pcs: xpcs: Add 2500BASE-X case in get state for XPCS drivers
net: bpf: Use sockopt_lock_sock() in ip_sock_set_tos()
net: mana: Use xdp_set_features_flag instead of direct assignment
vxlan: Cleanup IFLA_VXLAN_PORT_RANGE entry in vxlan_get_size()
iavf: delete the iavf client interface
iavf: add a common function for undoing the interrupt scheme
iavf: use unregister_netdev
iavf: rely on netdev's own registered state
iavf: fix the waiting time for initial reset
iavf: in iavf_down, don't queue watchdog_task if comms failed
iavf: simplify mutex_trylock+sleep loops
iavf: fix comments about old bit locks
doc/netlink: Update schema to support cmd-cnt-name and cmd-max-name
tools: ynl: introduce option to process unknown attributes or types
ipvlan: properly track tx_errors
netdevsim: Block until all devices are released
nfp: using napi_build_skb() to replace build_skb()
net: dsa: microchip: ksz9477: Fix spelling mistake "Enery" -> "Energy"
net: dsa: microchip: Ensure Stable PME Pin State for Wake-on-LAN
net: dsa: microchip: Refactor switch shutdown routine for WoL preparation
...
- Support non-BSS ELF segments with 0 filesz (Eric W. Biederman, Kees Cook)
- Enable namespaced binfmt_misc (Christian Brauner)
- Remove struct tag 'dynamic' from ELF UAPI (Alejandro Colomar)
- Clean up binfmt_elf_fdpic debug output (Greg Ungerer)
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmU/40AWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJh1rD/9g8iQ77KvC/l/GUjt9WNCsbwMR
4Ro15U6PP9TbafxEUTgYGrwpVPcWrOTz3zrLZ/NsR5GtgKolxLry94oeUPCpFRUP
v+4cQWpcQQtkAiRw+vc4/XfUivWmZuNGiLOt2egZUP6tQhJocmRNW7XbGF1ZDrSA
ASZknaA7qVLx/hnghm+bCXjNOx6hN/Md35QBPuyAclpD3sbUJDPSODZZb9Bcz+4w
0qD3acA3Nulug9k/5j7Ed0MzV8I/WfgZQQhGMl4K7yBQv06vcrRV6Eon4D9KvJVm
bjK3zFE/zILkY1BHIUZZT3h2DjdUwHrGr82u5y6u3buj88IcNyFfSaGyYYBqn3Ux
P7Y+dD9zZXQuMbqmhWbdK8UoSYiJ9isOB02lt0oHipONR5PqRocTsA6gseMsO9cv
TwvGL279WlfZIj+2pvn0VJv/7DOCKGjZfc2AXhgPSkjICSO9mEOlVcFv1v3ZuXAn
Cb/6/BMZyNqh/UIGWdPRyDVHEdswpJVcecewnJwmrG1vmvYyfyP8U+VoRE4ItELz
fMpZskAb7SKV+McHLDauV+9eCgqaF5DIM3/zgws5iayRcGZQfengXqIajL7Ujlwf
RKlnfhtRxkfgpF8vEmQDs0y5AVsU/l48dOSrb/0Vg9oXKBdBa9ozyhr1Ok5kwkiN
LfDZDjSMyERgO/UZHQ==
=hxk8
-----END PGP SIGNATURE-----
Merge tag 'execve-v6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull execve updates from Kees Cook:
- Support non-BSS ELF segments with zero filesz
Eric Biederman and I refactored ELF segment loading to handle the
case where a segment has a smaller filesz than memsz. Traditionally
linkers only did this for .bss and it was always the last segment. As
a result, the kernel only handled this case when it was the last
segment. We've had two recent cases where linkers were trying to use
these kinds of segments for other reasons, and the were in the middle
of the segment list. There was no good reason for the kernel not to
support this, and the refactor actually ends up making things more
readable too.
- Enable namespaced binfmt_misc
Christian Brauner has made it possible to use binfmt_misc with mount
namespaces. This means some traditionally root-only interfaces (for
adding/removing formats) are now more exposed (but believed to be
safe).
- Remove struct tag 'dynamic' from ELF UAPI
Alejandro Colomar noticed that the ELF UAPI has been polluting the
struct namespace with an unused and overly generic tag named
"dynamic" for no discernible reason for many many years. After
double-checking various distro source repositories, it has been
removed.
- Clean up binfmt_elf_fdpic debug output (Greg Ungerer)
* tag 'execve-v6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
binfmt_misc: enable sandboxed mounts
binfmt_misc: cleanup on filesystem umount
binfmt_elf_fdpic: clean up debug warnings
mm: Remove unused vm_brk()
binfmt_elf: Only report padzero() errors when PROT_WRITE
binfmt_elf: Use elf_load() for library
binfmt_elf: Use elf_load() for interpreter
binfmt_elf: elf_bss no longer used by load_elf_binary()
binfmt_elf: Support segments with 0 filesz and misaligned starts
elf, uapi: Remove struct tag 'dynamic'
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmU7xhwACgkQu+CwddJF
iJr60gf8ChEzZnP6JM6OtvcbL1AtuoIn/B0iOOCbZYM2e/EPVL19KI3IXxOVb9j3
bOIogGT/PSa6cfzPwEzxu1AEv3A2xu9TgXMIG3vXzBU7QqPlp2rFD8+xvLe8Trcl
VWaPZNUCKL9Hrq5gPM8B12N/UuAUA5Pjf9A9Hn1ZNjS4p2seEIc+CfdqtEAB7Th3
++Tc9MRNP5bEmswf8iivIsuDDSkRS3GxshfBbcVzSE2l+JvxekKjmPjykQvsGnJm
sV3Z1blej9Dq/d04ZRaKtLSrA7kW27cyHWzTsZb2IXs+JOmmGZGgK0CFl9OOVtVD
IxpsYLw6oZKf8WXetkyzplsQWERXUw==
=TGgo
-----END PGP SIGNATURE-----
Merge tag 'slab-for-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:
- SLUB: slab order calculation refactoring (Vlastimil Babka, Feng Tang)
Recent proposals to tune the slab order calculations have prompted us
to look at the current code and refactor it to make it easier to
follow and eliminate some odd corner cases.
The refactoring is mostly non-functional changes, but should make the
actual tuning easier to implement and review.
* tag 'slab-for-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
mm/slub: refactor calculate_order() and calc_slab_order()
mm/slub: attempt to find layouts up to 1/2 waste in calculate_order()
mm/slub: remove min_objects loop from calculate_order()
mm/slub: simplify the last resort slab order calculation
mm/slub: add sanity check for slub_min/max_order cmdline setup
This pull request contains the following branches:
rcu/torture: RCU torture, locktorture and generic torture infrastructure
updates that include various fixes, cleanups and consolidations.
Among the user visible things, ftrace dumps can now be found into
their own file, and module parameters get better documented and
reported on dumps.
rcu/fixes: Generic and misc fixes all over the place. Some highlights:
* Hotplug handling has seen some light cleanups and comments.
* An RCU barrier can now be triggered through sysfs to serialize
memory stress testing and avoid OOM.
* Object information is now dumped in case of invalid callback
invocation.
* Also various SRCU issues, too hard to trigger to deserve urgent
pull requests, have been fixed.
rcu/docs: RCU documentation updates
rcu/refscale: RCU reference scalability test minor fixes and doc
improvements.
rcu/tasks: RCU tasks minor fixes
rcu/stall: Stall detection updates. Introduce RCU CPU Stall notifiers
that allows a subsystem to provide informations to help debugging.
Also cure some false positive stalls.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmU21h0ACgkQhSRUR1CO
jHdUgA/+Myy5K5OxNrqlF/gIK+flOSg635RyZ0DBx8OMXZ/fAg9qRI+PKt5I4Lha
eXAg6EtmwSgHmIbjcg8WzsvwniEsqqjOF+n1qil447fHUI2Qqw6c7fIm/MXQkeHJ
qA7CODDRtsAnwnjmTteasmMeGV0bmXDENxhNrAZBFnVkRgTqfyDbFcn+nxOaPK6b
fmbKvnB07WUg1KOV8/MbEtAZPb8QgHo58bXSZRKjKkiqRQWB/D3On+tShFK7SYJi
wIqQ96MLyUXLaIWQ47v6xEO4PZO+3o1wAryvP1DRdb5UrPjO6yKFfQaoo5Mza92G
zhBJhnXkVvCoNoCU7GKJIDV54SgDHaB6Sf1GN5cjwfujOkLuGCyg0CpKktCGm7uH
n3X66PVep608Uj2Y/pAo/hv3Hbv7lCu4nfrERvVLG9YoxUvTJDsKmBv+SF/g2mxF
rHqFa39HUPr1yHA5WjqOQS3lLdqCXEGKvNi6zXCvOceiDbHbiJFkBo6p8TVrbSMX
FCOWZ3LoE+6uiLu/lLOEroTjeBd8GhDh1LgWgyVK7o0LhP1018DSBolrpcSwnmOo
Q/E4G2x+aPWs+5NTOmMGOIPY70khKQIM3c8YZelSRffJBo6O3yV68h6X45NQxYvx
keLvrDaza8h4hKwaof/QaX4ZJgTOZ0xjpawr1vR0hbK8LNtPrUw=
=cVD7
-----END PGP SIGNATURE-----
Merge tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks
Pull RCU updates from Frederic Weisbecker:
- RCU torture, locktorture and generic torture infrastructure updates
that include various fixes, cleanups and consolidations.
Among the user visible things, ftrace dumps can now be found into
their own file, and module parameters get better documented and
reported on dumps.
- Generic and misc fixes all over the place. Some highlights:
* Hotplug handling has seen some light cleanups and comments
* An RCU barrier can now be triggered through sysfs to serialize
memory stress testing and avoid OOM
* Object information is now dumped in case of invalid callback
invocation
* Also various SRCU issues, too hard to trigger to deserve urgent
pull requests, have been fixed
- RCU documentation updates
- RCU reference scalability test minor fixes and doc improvements.
- RCU tasks minor fixes
- Stall detection updates. Introduce RCU CPU Stall notifiers that
allows a subsystem to provide informations to help debugging. Also
cure some false positive stalls.
* tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: (56 commits)
srcu: Only accelerate on enqueue time
locktorture: Check the correct variable for allocation failure
srcu: Fix callbacks acceleration mishandling
rcu: Comment why callbacks migration can't wait for CPUHP_RCUTREE_PREP
rcu: Standardize explicit CPU-hotplug calls
rcu: Conditionally build CPU-hotplug teardown callbacks
rcu: Remove references to rcu_migrate_callbacks() from diagrams
rcu: Assume rcu_report_dead() is always called locally
rcu: Assume IRQS disabled from rcu_report_dead()
rcu: Use rcu_segcblist_segempty() instead of open coding it
rcu: kmemleak: Ignore kmemleak false positives when RCU-freeing objects
srcu: Fix srcu_struct node grpmask overflow on 64-bit systems
torture: Convert parse-console.sh to mktemp
rcutorture: Traverse possible cpu to set maxcpu in rcu_nocb_toggle()
rcutorture: Replace schedule_timeout*() 1-jiffy waits with HZ/20
torture: Add kvm.sh --debug-info argument
locktorture: Rename readers_bind/writers_bind to bind_readers/bind_writers
doc: Catch-up update for locktorture module parameters
locktorture: Add call_rcu_chains module parameter
locktorture: Add new module parameters to lock_torture_print_module_parms()
...
- Fair scheduler (SCHED_OTHER) improvements:
- Remove the old and now unused SIS_PROP code & option
- Scan cluster before LLC in the wake-up path
- Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
- NUMA scheduling improvements:
- Improve the VMA access-PID code to better skip/scan VMAs
- Extend tracing to cover VMA-skipping decisions
- Improve/fix the recently introduced sched_numa_find_nth_cpu() code
- Generalize numa_map_to_online_node()
- Energy scheduling improvements:
- Remove the EM_MAX_COMPLEXITY limit
- Add tracepoints to track energy computation
- Make the behavior of the 'sched_energy_aware' sysctl more consistent
- Consolidate and clean up access to a CPU's max compute capacity
- Fix uclamp code corner cases
- RT scheduling improvements:
- Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates
- Drive the ->rto_mask with rt_rq->pushable_tasks updates
- Scheduler scalability improvements:
- Rate-limit updates to tg->load_avg
- On x86 disable IBRS when CPU is offline to improve single-threaded performance
- Micro-optimize in_task() and in_interrupt()
- Micro-optimize the PSI code
- Avoid updating PSI triggers and ->rtpoll_total when there are no state changes
- Core scheduler infrastructure improvements:
- Use saved_state to reduce some spurious freezer wakeups
- Bring in a handful of fast-headers improvements to scheduler headers
- Make the scheduler UAPI headers more widely usable by user-space
- Simplify the control flow of scheduler syscalls by using lock guards
- Fix sched_setaffinity() vs. CPU hotplug race
- Scheduler debuggability improvements:
- Disallow writing invalid values to sched_rt_period_us
- Fix a race in the rq-clock debugging code triggering warnings
- Fix a warning in the bandwidth distribution code
- Micro-optimize in_atomic_preempt_off() checks
- Enforce that the tasklist_lock is held in for_each_thread()
- Print the TGID in sched_show_task()
- Remove the /proc/sys/kernel/sched_child_runs_first sysctl
- Misc cleanups & fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU8/NoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gN+xAAvKGYNZBCBG4jowxccgqAbCx81KOhhsy/
KUaOmdLPg9WaXuqjZ5sggXQCMT0wUqBYAmqV7ts53VhWcma2I1ap4dCM6Jj+RLrc
vNwkeNetsikiZtarMoCJs5NahL8ULh3liBaoAkkToPjQ5r43aZ/eKwDovEdIKc+g
+Vgn7jUY8ssIrAOKT1midSwY1y8kAU2AzWOSFDTgedkJP4PgOu9/lBl9jSJ2sYaX
N4XqONYPXTwOHUtvmzkYILxLz0k0GgJ7hmt78E8Xy2rC4taGCRwCfCMBYxREuwiP
huo3O1P/iIe5svm4/EBUvcpvf44eAWTV+CD0dnJPwOc9IvFhpSzqSZZAsyy/JQKt
Lnzmc/xmyc1PnXCYJfHuXrw2/m+MyUHaegPzh5iLJFrlqa79GavOElj0jNTAMzbZ
39fybzPtuFP+64faRfu0BBlQZfORPBNc/oWMpPKqgP58YGuveKTWaUF5rl5lM7Ne
nm07uOmq02JVR8YzPl/FcfhU2dPMawWuMwUjEr2eU+lAunY3PF88vu0FALj7iOBd
66F8qrtpDHJanOxrdEUwSJ7hgw79qY1iw66Db7cQYjMazFKZONxArQPqFUZ0ngLI
n9hVa7brg1bAQKrQflqjcIAIbpVu3SjPEl15cKpAJTB/gn5H66TQgw8uQ6HfG+h2
GtOsn1nlvuk=
=GDqb
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Fair scheduler (SCHED_OTHER) improvements:
- Remove the old and now unused SIS_PROP code & option
- Scan cluster before LLC in the wake-up path
- Use candidate prev/recent_used CPU if scanning failed for cluster
wakeup
NUMA scheduling improvements:
- Improve the VMA access-PID code to better skip/scan VMAs
- Extend tracing to cover VMA-skipping decisions
- Improve/fix the recently introduced sched_numa_find_nth_cpu() code
- Generalize numa_map_to_online_node()
Energy scheduling improvements:
- Remove the EM_MAX_COMPLEXITY limit
- Add tracepoints to track energy computation
- Make the behavior of the 'sched_energy_aware' sysctl more
consistent
- Consolidate and clean up access to a CPU's max compute capacity
- Fix uclamp code corner cases
RT scheduling improvements:
- Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates
- Drive the ->rto_mask with rt_rq->pushable_tasks updates
Scheduler scalability improvements:
- Rate-limit updates to tg->load_avg
- On x86 disable IBRS when CPU is offline to improve single-threaded
performance
- Micro-optimize in_task() and in_interrupt()
- Micro-optimize the PSI code
- Avoid updating PSI triggers and ->rtpoll_total when there are no
state changes
Core scheduler infrastructure improvements:
- Use saved_state to reduce some spurious freezer wakeups
- Bring in a handful of fast-headers improvements to scheduler
headers
- Make the scheduler UAPI headers more widely usable by user-space
- Simplify the control flow of scheduler syscalls by using lock
guards
- Fix sched_setaffinity() vs. CPU hotplug race
Scheduler debuggability improvements:
- Disallow writing invalid values to sched_rt_period_us
- Fix a race in the rq-clock debugging code triggering warnings
- Fix a warning in the bandwidth distribution code
- Micro-optimize in_atomic_preempt_off() checks
- Enforce that the tasklist_lock is held in for_each_thread()
- Print the TGID in sched_show_task()
- Remove the /proc/sys/kernel/sched_child_runs_first sysctl
... and misc cleanups & fixes"
* tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
sched/fair: Remove SIS_PROP
sched/fair: Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
sched/fair: Scan cluster before scanning LLC in wake-up path
sched: Add cpus_share_resources API
sched/core: Fix RQCF_ACT_SKIP leak
sched/fair: Remove unused 'curr' argument from pick_next_entity()
sched/nohz: Update comments about NEWILB_KICK
sched/fair: Remove duplicate #include
sched/psi: Update poll => rtpoll in relevant comments
sched: Make PELT acronym definition searchable
sched: Fix stop_one_cpu_nowait() vs hotplug
sched/psi: Bail out early from irq time accounting
sched/topology: Rename 'DIE' domain to 'PKG'
sched/psi: Delete the 'update_total' function parameter from update_triggers()
sched/psi: Avoid updating PSI triggers and ->rtpoll_total when there are no state changes
sched/headers: Remove comment referring to rq::cpu_load, since this has been removed
sched/numa: Complete scanning of inactive VMAs when there is no alternative
sched/numa: Complete scanning of partial VMAs regardless of PID activity
sched/numa: Move up the access pid reset logic
sched/numa: Trace decisions related to skipping VMAs
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTppYgAKCRCRxhvAZXjc
okIHAP9anLz1QDyMLH12ASuHjgBc0Of3jcB6NB97IWGpL4O21gEA46ohaD+vcJuC
YkBLU3lXqQ87nfu28ExFAzh10hG2jwM=
=m4pB
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull vfs inode time accessor updates from Christian Brauner:
"This finishes the conversion of all inode time fields to accessor
functions as discussed on list. Changing timestamps manually as we
used to do before is error prone. Using accessors function makes this
robust.
It does not contain the switch of the time fields to discrete 64 bit
integers to replace struct timespec and free up space in struct inode.
But after this, the switch can be trivially made and the patch should
only affect the vfs if we decide to do it"
* tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (86 commits)
fs: rename inode i_atime and i_mtime fields
security: convert to new timestamp accessors
selinux: convert to new timestamp accessors
apparmor: convert to new timestamp accessors
sunrpc: convert to new timestamp accessors
mm: convert to new timestamp accessors
bpf: convert to new timestamp accessors
ipc: convert to new timestamp accessors
linux: convert to new timestamp accessors
zonefs: convert to new timestamp accessors
xfs: convert to new timestamp accessors
vboxsf: convert to new timestamp accessors
ufs: convert to new timestamp accessors
udf: convert to new timestamp accessors
ubifs: convert to new timestamp accessors
tracefs: convert to new timestamp accessors
sysv: convert to new timestamp accessors
squashfs: convert to new timestamp accessors
server: convert to new timestamp accessors
client: convert to new timestamp accessors
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTppWAAKCRCRxhvAZXjc
okB2AP4jjoRErJBwj245OIDJqzoj4m4UVOVd0MH2AkiSpANczwD/TToChdpusY2y
qAYg1fQoGMbDVlb7Txaj9qI9ieCf9w0=
=2PXg
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.xattr' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull vfs xattr updates from Christian Brauner:
"The 's_xattr' field of 'struct super_block' currently requires a
mutable table of 'struct xattr_handler' entries (although each handler
itself is const). However, no code in vfs actually modifies the
tables.
This changes the type of 's_xattr' to allow const tables, and modifies
existing file systems to move their tables to .rodata. This is
desirable because these tables contain entries with function pointers
in them; moving them to .rodata makes it considerably less likely to
be modified accidentally or maliciously at runtime"
* tag 'vfs-6.7.xattr' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (30 commits)
const_structs.checkpatch: add xattr_handler
net: move sockfs_xattr_handlers to .rodata
shmem: move shmem_xattr_handlers to .rodata
overlayfs: move xattr tables to .rodata
xfs: move xfs_xattr_handlers to .rodata
ubifs: move ubifs_xattr_handlers to .rodata
squashfs: move squashfs_xattr_handlers to .rodata
smb: move cifs_xattr_handlers to .rodata
reiserfs: move reiserfs_xattr_handlers to .rodata
orangefs: move orangefs_xattr_handlers to .rodata
ocfs2: move ocfs2_xattr_handlers and ocfs2_xattr_handler_map to .rodata
ntfs3: move ntfs_xattr_handlers to .rodata
nfs: move nfs4_xattr_handlers to .rodata
kernfs: move kernfs_xattr_handlers to .rodata
jfs: move jfs_xattr_handlers to .rodata
jffs2: move jffs2_xattr_handlers to .rodata
hfsplus: move hfsplus_xattr_handlers to .rodata
hfs: move hfs_xattr_handlers to .rodata
gfs2: move gfs2_xattr_handlers_max to .rodata
fuse: move fuse_xattr_handlers to .rodata
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTpoQAAKCRCRxhvAZXjc
ovFNAQDgIRjXfZ1Ku+USxsRRdqp8geJVaNc3PuMmYhOYhUenqgEAmC1m+p0y31dS
P6+HlL16Mqgu0tpLCcJK9BibpDZ0Ew4=
=7yD1
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.misc' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
"This contains the usual miscellaneous features, cleanups, and fixes
for vfs and individual fses.
Features:
- Rename and export helpers that get write access to a mount. They
are used in overlayfs to get write access to the upper mount.
- Print the pretty name of the root device on boot failure. This
helps in scenarios where we would usually only print
"unknown-block(1,2)".
- Add an internal SB_I_NOUMASK flag. This is another part in the
endless POSIX ACL saga in a way.
When POSIX ACLs are enabled via SB_POSIXACL the vfs cannot strip
the umask because if the relevant inode has POSIX ACLs set it might
take the umask from there. But if the inode doesn't have any POSIX
ACLs set then we apply the umask in the filesytem itself. So we end
up with:
(1) no SB_POSIXACL -> strip umask in vfs
(2) SB_POSIXACL -> strip umask in filesystem
The umask semantics associated with SB_POSIXACL allowed filesystems
that don't even support POSIX ACLs at all to raise SB_POSIXACL
purely to avoid umask stripping. That specifically means NFS v4 and
Overlayfs. NFS v4 does it because it delegates this to the server
and Overlayfs because it needs to delegate umask stripping to the
upper filesystem, i.e., the filesystem used as the writable layer.
This went so far that SB_POSIXACL is raised eve on kernels that
don't even have POSIX ACL support at all.
Stop this blatant abuse and add SB_I_NOUMASK which is an internal
superblock flag that filesystems can raise to opt out of umask
handling. That should really only be the two mentioned above. It's
not that we want any filesystems to do this. Ideally we have all
umask handling always in the vfs.
- Make overlayfs use SB_I_NOUMASK too.
- Now that we have SB_I_NOUMASK, stop checking for SB_POSIXACL in
IS_POSIXACL() if the kernel doesn't have support for it. This is a
very old patch but it's only possible to do this now with the wider
cleanup that was done.
- Follow-up work on fake path handling from last cycle. Citing mostly
from Amir:
When overlayfs was first merged, overlayfs files of regular files
and directories, the ones that are installed in file table, had a
"fake" path, namely, f_path is the overlayfs path and f_inode is
the "real" inode on the underlying filesystem.
In v6.5, we took another small step by introducing of the
backing_file container and the file_real_path() helper. This change
allowed vfs and filesystem code to get the "real" path of an
overlayfs backing file. With this change, we were able to make
fsnotify work correctly and report events on the "real" filesystem
objects that were accessed via overlayfs.
This method works fine, but it still leaves the vfs vulnerable to
new code that is not aware of files with fake path. A recent
example is commit db1d1e8b98 ("IMA: use vfs_getattr_nosec to get
the i_version"). This commit uses direct referencing to f_path in
IMA code that otherwise uses file_inode() and file_dentry() to
reference the filesystem objects that it is measuring.
This contains work to switch things around: instead of having
filesystem code opt-in to get the "real" path, have generic code
opt-in for the "fake" path in the few places that it is needed.
Is it far more likely that new filesystems code that does not use
the file_dentry() and file_real_path() helpers will end up causing
crashes or averting LSM/audit rules if we keep the "fake" path
exposed by default.
This change already makes file_dentry() moot, but for now we did
not change this helper just added a WARN_ON() in ovl_d_real() to
catch if we have made any wrong assumptions.
After the dust settles on this change, we can make file_dentry() a
plain accessor and we can drop the inode argument to ->d_real().
- Switch struct file to SLAB_TYPESAFE_BY_RCU. This looks like a small
change but it really isn't and I would like to see everyone on
their tippie toes for any possible bugs from this work.
Essentially we've been doing most of what SLAB_TYPESAFE_BY_RCU for
files since a very long time because of the nasty interactions
between the SCM_RIGHTS file descriptor garbage collection. So
extending it makes a lot of sense but it is a subtle change. There
are almost no places that fiddle with file rcu semantics directly
and the ones that did mess around with struct file internal under
rcu have been made to stop doing that because it really was always
dodgy.
I forgot to put in the link tag for this change and the discussion
in the commit so adding it into the merge message:
https://lore.kernel.org/r/20230926162228.68666-1-mjguzik@gmail.com
Cleanups:
- Various smaller pipe cleanups including the removal of a spin lock
that was only used to protect against writes without pipe_lock()
from O_NOTIFICATION_PIPE aka watch queues. As that was never
implemented remove the additional locking from pipe_write().
- Annotate struct watch_filter with the new __counted_by attribute.
- Clarify do_unlinkat() cleanup so that it doesn't look like an extra
iput() is done that would cause issues.
- Simplify file cleanup when the file has never been opened.
- Use module helper instead of open-coding it.
- Predict error unlikely for stale retry.
- Use WRITE_ONCE() for mount expiry field instead of just commenting
that one hopes the compiler doesn't get smart.
Fixes:
- Fix readahead on block devices.
- Fix writeback when layztime is enabled and inodes whose timestamp
is the only thing that changed reside on wb->b_dirty_time. This
caused excessively large zombie memory cgroup when lazytime was
enabled as such inodes weren't handled fast enough.
- Convert BUG_ON() to WARN_ON_ONCE() in open_last_lookups()"
* tag 'vfs-6.7.misc' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (26 commits)
file, i915: fix file reference for mmap_singleton()
vfs: Convert BUG_ON to WARN_ON_ONCE in open_last_lookups
writeback, cgroup: switch inodes with dirty timestamps to release dying cgwbs
chardev: Simplify usage of try_module_get()
ovl: rely on SB_I_NOUMASK
fs: fix umask on NFS with CONFIG_FS_POSIX_ACL=n
fs: store real path instead of fake path in backing file f_path
fs: create helper file_user_path() for user displayed mapped file path
fs: get mnt_writers count for an open backing file's real path
vfs: stop counting on gcc not messing with mnt_expiry_mark if not asked
vfs: predict the error in retry_estale as unlikely
backing file: free directly
vfs: fix readahead(2) on block devices
io_uring: use files_lookup_fd_locked()
file: convert to SLAB_TYPESAFE_BY_RCU
vfs: shave work on failed file open
fs: simplify misleading code to remove ambiguity regarding ihold()/iput()
watch_queue: Annotate struct watch_filter with __counted_by
fs/pipe: use spinlock in pipe_read() only if there is a watch_queue
fs/pipe: remove unnecessary spinlock from pipe_write()
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZT0C2gAKCRCRxhvAZXjc
otV8AQCK5F9ONoQ7ISpdrKyUJiswySGXx0CYPfXbSg5gHH87zgEAua3vwVKeGXXF
5iVsdiNzIIQDwGDx7FyxufL4ggcN6gQ=
=E1kV
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.super' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull vfs superblock updates from Christian Brauner:
"This contains the work to make block device opening functions return a
struct bdev_handle instead of just a struct block_device. The same
struct bdev_handle is then also passed to block device closing
functions.
This allows us to propagate context from opening to closing a block
device without having to modify all users everytime.
Sidenote, in the future we might even want to try and have block
device opening functions return a struct file directly but that's a
series on top of this.
These are further preparatory changes to be able to count writable
opens and blocking writes to mounted block devices. That's a separate
piece of work for next cycle and for that we absolutely need the
changes to btrfs that have been quietly dropped somehow.
Originally the series contained a patch that removed the old
blkdev_*() helpers. But since this would've caused needles churn in
-next for bcachefs we ended up delaying it.
The second piece of work addresses one of the major annoyances about
the work last cycle, namely that we required dropping s_umount
whenever we used the superblock and fs_holder_ops for a block device.
The reason for that requirement had been that in some codepaths
s_umount could've been taken under disk->open_mutex (that's always
been the case, at least theoretically). For example, on surprise block
device removal or media change. And opening and closing block devices
required grabbing disk->open_mutex as well.
So we did the work and went through the block layer and fixed all
those places so that s_umount is never taken under disk->open_mutex.
This means no more brittle games where we yield and reacquire s_umount
during block device opening and closing and no more requirements where
block devices need to be closed. Filesystems don't need to care about
this.
There's a bunch of other follow-up work such as moving block device
freezing and thawing to holder operations which makes it work for all
block devices and not just the main block device just as we did for
surprise removal. But that is for next cycle.
Tested with fstests for all major fses, blktests, LTP"
* tag 'vfs-6.7.super' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (37 commits)
porting: update locking requirements
fs: assert that open_mutex isn't held over holder ops
block: assert that we're not holding open_mutex over blk_report_disk_dead
block: move bdev_mark_dead out of disk_check_media_change
block: WARN_ON_ONCE() when we remove active partitions
block: simplify bdev_del_partition()
fs: Avoid grabbing sb->s_umount under bdev->bd_holder_lock
jfs: fix log->bdev_handle null ptr deref in lbmStartIO
bcache: Fixup error handling in register_cache()
xfs: Convert to bdev_open_by_path()
reiserfs: Convert to bdev_open_by_dev/path()
ocfs2: Convert to use bdev_open_by_dev()
nfs/blocklayout: Convert to use bdev_open_by_dev/path()
jfs: Convert to bdev_open_by_dev()
f2fs: Convert to bdev_open_by_dev/path()
ext4: Convert to bdev_open_by_dev()
erofs: Convert to use bdev_open_by_path()
btrfs: Convert to bdev_open_by_path()
fs: Convert to bdev_open_by_dev()
mm/swap: Convert to use bdev_open_by_dev()
...
Convert swapping code to use bdev_open_by_dev() and pass the handle
around.
CC: linux-mm@kvack.org
CC: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230927093442.25915-18-jack@suse.cz
Signed-off-by: Christian Brauner <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZTp12QAKCRDbK58LschI
g8BrAQDifqp5liEEdXV8jdReBwJtqInjrL5tzy5LcyHUMQbTaAEA6Ph3Ct3B+3oA
mFnIW/y6UJiJrby0Xz4+vV5BXI/5WQg=
=pLCV
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-10-26
We've added 51 non-merge commits during the last 10 day(s) which contain
a total of 75 files changed, 5037 insertions(+), 200 deletions(-).
The main changes are:
1) Add open-coded task, css_task and css iterator support.
One of the use cases is customizable OOM victim selection via BPF,
from Chuyi Zhou.
2) Fix BPF verifier's iterator convergence logic to use exact states
comparison for convergence checks, from Eduard Zingerman,
Andrii Nakryiko and Alexei Starovoitov.
3) Add BPF programmable net device where bpf_mprog defines the logic
of its xmit routine. It can operate in L3 and L2 mode,
from Daniel Borkmann and Nikolay Aleksandrov.
4) Batch of fixes for BPF per-CPU kptr and re-enable unit_size checking
for global per-CPU allocator, from Hou Tao.
5) Fix libbpf which eagerly assumed that SHT_GNU_verdef ELF section
was going to be present whenever a binary has SHT_GNU_versym section,
from Andrii Nakryiko.
6) Fix BPF ringbuf correctness to fold smp_mb__before_atomic() into
atomic_set_release(), from Paul E. McKenney.
7) Add a warning if NAPI callback missed xdp_do_flush() under
CONFIG_DEBUG_NET which helps checking if drivers were missing
the former, from Sebastian Andrzej Siewior.
8) Fix missed RCU read-lock in bpf_task_under_cgroup() which was throwing
a warning under sleepable programs, from Yafang Shao.
9) Avoid unnecessary -EBUSY from htab_lock_bucket by disabling IRQ before
checking map_locked, from Song Liu.
10) Make BPF CI linked_list failure test more robust,
from Kumar Kartikeya Dwivedi.
11) Enable samples/bpf to be built as PIE in Fedora, from Viktor Malik.
12) Fix xsk starving when multiple xsk sockets were associated with
a single xsk_buff_pool, from Albert Huang.
13) Clarify the signed modulo implementation for the BPF ISA standardization
document that it uses truncated division, from Dave Thaler.
14) Improve BPF verifier's JEQ/JNE branch taken logic to also consider
signed bounds knowledge, from Andrii Nakryiko.
15) Add an option to XDP selftests to use multi-buffer AF_XDP
xdp_hw_metadata and mark used XDP programs as capable to use frags,
from Larysa Zaremba.
16) Fix bpftool's BTF dumper wrt printing a pointer value and another
one to fix struct_ops dump in an array, from Manu Bretelle.
* tag 'for-netdev' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (51 commits)
netkit: Remove explicit active/peer ptr initialization
selftests/bpf: Fix selftests broken by mitigations=off
samples/bpf: Allow building with custom bpftool
samples/bpf: Fix passing LDFLAGS to libbpf
samples/bpf: Allow building with custom CFLAGS/LDFLAGS
bpf: Add more WARN_ON_ONCE checks for mismatched alloc and free
selftests/bpf: Add selftests for netkit
selftests/bpf: Add netlink helper library
bpftool: Extend net dump with netkit progs
bpftool: Implement link show support for netkit
libbpf: Add link-based API for netkit
tools: Sync if_link uapi header
netkit, bpf: Add bpf programmable net device
bpf: Improve JEQ/JNE branch taken logic
bpf: Fold smp_mb__before_atomic() into atomic_set_release()
bpf: Fix unnecessary -EBUSY from htab_lock_bucket
xsk: Avoid starving the xsk further down the list
bpf: print full verifier states on infinite loop detection
selftests/bpf: test if state loops are detected in a tricky case
bpf: correct loop detection for iterators convergence
...
====================
Link: https://lore.kernel.org/r/20231026150509.2824-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Improve alloc_migration_target_by_mpol()'s treatment of MPOL_INTERLEAVE.
Make an effort in do_mbind(), to identify the correct interleave index for
the first page to be migrated, so that it and all subsequent pages from
the same vma will be targeted to precisely their intended nodes. Pages
from following vmas will still be interleaved from the requested nodemask,
but perhaps starting from a different base.
Whether this is worth doing at all, or worth improving further, is
arguable: queue_folio_required() is right not to care about the precise
placement on interleaved nodes; but this little effort seems appropriate.
[hughd@google.com: do vma_iter search under mmap_write_unlock()]
Link: https://lkml.kernel.org/r/3311d544-fb05-a7f1-1b74-16aa0f6cd4fe@google.com
Link: https://lkml.kernel.org/r/77954a5-9c9b-1c11-7d5c-3262c01b895f@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mbind(2) holds down_write of current task's mmap_lock throughout
(exclusive because it needs to set the new mempolicy on the vmas);
migrate_pages(2) holds down_read of pid's mmap_lock throughout.
They both hold mmap_lock across the internal migrate_pages(), under which
all new page allocations (huge or small) are made. I'm nervous about it;
and migrate_pages() certainly does not need mmap_lock itself. It's done
this way for mbind(2), because its page allocator is vma_alloc_folio() or
alloc_hugetlb_folio_vma(), both of which depend on vma and address.
Now that we have alloc_pages_mpol(), depending on (refcounted) memory
policy and interleave index, mbind(2) can be modified to use that or
alloc_hugetlb_folio_nodemask(), and then not need mmap_lock across the
internal migrate_pages() at all: add alloc_migration_target_by_mpol() to
replace mbind's new_page().
(After that change, alloc_hugetlb_folio_vma() is used by nothing but a
userfaultfd function: move it out of hugetlb.h and into the #ifdef.)
migrate_pages(2) has chosen its target node before migrating, so can
continue to use the standard alloc_migration_target(); but let it take and
drop mmap_lock just around migrate_to_node()'s queue_pages_range():
neither the node-to-node calculations nor the page migrations need it.
It seems unlikely, but it is conceivable that some userspace depends on
the kernel's mmap_lock exclusion here, instead of doing its own locking:
more likely in a testsuite than in real life. It is also possible, of
course, that some pages on the list will be munmapped by another thread
before they are migrated, or a newer memory policy applied to the range by
that time: but such races could happen before, as soon as mmap_lock was
dropped, so it does not appear to be a concern.
Link: https://lkml.kernel.org/r/21e564e8-269f-6a89-7ee2-fd612831c289@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Shrink shmem's stack usage by eliminating the pseudo-vma from its folio
allocation. alloc_pages_mpol(gfp, order, pol, ilx, nid) becomes the
principal actor for passing mempolicy choice down to __alloc_pages(),
rather than vma_alloc_folio(gfp, order, vma, addr, hugepage).
vma_alloc_folio() and alloc_pages() remain, but as wrappers around
alloc_pages_mpol(). alloc_pages_bulk_*() untouched, except to provide the
additional args to policy_nodemask(), which subsumes policy_node().
Cleanup throughout, cutting out some unhelpful "helpers".
It would all be much simpler without MPOL_INTERLEAVE, but that adds a
dynamic to the constant mpol: complicated by v3.6 commit 09c231cb8b
("tmpfs: distribute interleave better across nodes"), which added ino bias
to the interleave, hidden from mm/mempolicy.c until this commit.
Hence "ilx" throughout, the "interleave index". Originally I thought it
could be done just with nid, but that's wrong: the nodemask may come from
the shared policy layer below a shmem vma, or it may come from the task
layer above a shmem vma; and without the final nodemask then nodeid cannot
be decided. And how ilx is applied depends also on page order.
The interleave index is almost always irrelevant unless MPOL_INTERLEAVE:
with one exception in alloc_pages_mpol(), where the NO_INTERLEAVE_INDEX
passed down from vma-less alloc_pages() is also used as hint not to use
THP-style hugepage allocation - to avoid the overhead of a hugepage arg
(though I don't understand why we never just added a GFP bit for THP - if
it actually needs a different allocation strategy from other pages of the
same order). vma_alloc_folio() still carries its hugepage arg here, but
it is not used, and should be removed when agreed.
get_vma_policy() no longer allows a NULL vma: over time I believe we've
eradicated all the places which used to need it e.g. swapoff and madvise
used to pass NULL vma to read_swap_cache_async(), but now know the vma.
[hughd@google.com: handle NULL mpol being passed to __read_swap_cache_async()]
Link: https://lkml.kernel.org/r/ea419956-4751-0102-21f7-9c93cb957892@google.com
Link: https://lkml.kernel.org/r/74e34633-6060-f5e3-aee-7040d43f2e93@google.com
Link: https://lkml.kernel.org/r/1738368e-bac0-fd11-ed7f-b87142a939fe@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Domenico Cerasuolo <mimmocerasuolo@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
folio_prep_large_rmappable() is being used repeatedly along with a
conversion from page to folio, a check non-NULL, a check order > 1: wrap
it all up into struct folio *page_rmappable_folio(struct page *).
Link: https://lkml.kernel.org/r/8d92c6cf-eebe-748-e29c-c8ab224c741@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
v3.8 commit b24f53a0be ("mm: mempolicy: Add MPOL_MF_LAZY") introduced
MPOL_MF_LAZY, and included it in the MPOL_MF_VALID flags; but a720094ded
("mm: mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for now")
immediately removed it from MPOL_MF_VALID flags, pending further review.
"This will need to be revisited", but it has not been reinstated.
The present state is confusing: there is dead code in mm/mempolicy.c to
handle MPOL_MF_LAZY cases which can never occur. Remove that: it can be
resurrected later if necessary. But keep the definition of MPOL_MF_LAZY,
which must remain in the UAPI, even though it always fails with EINVAL.
https://lore.kernel.org/linux-mm/1553041659-46787-1-git-send-email-yang.shi@linux.alibaba.com/
links to a previous request to remove MPOL_MF_LAZY.
Link: https://lkml.kernel.org/r/80c9665c-1c3f-17ba-21a3-f6115cebf7d@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mpol_shared_policy_init() does not need to use a pseudo-vma: it can use
sp_alloc() and sp_insert() directly, since the object's shared policy tree
is empty and inaccessible (needing no lock) at get_inode() time.
Link: https://lkml.kernel.org/r/3bef62d8-ae78-4c2-533-56a44ae425c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Before getting down to work, do a little cleanup, mainly of inconsistent
variable naming. I gave up trying to rationalize mpol versus pol versus
policy, and node versus nid, but let's avoid p and nd. Remove a few
superfluous blank lines, but add one; and here prefer vma->vm_policy to
vma_policy(vma) - the latter being appropriate in other sources, which
have to allow for !CONFIG_NUMA. That intriguing line about KERNEL_DS?
should have gone in v2.6.15, when numa_policy_init() stopped using
set_mempolicy(2)'s system call handler.
Link: https://lkml.kernel.org/r/68287974-b6ae-7df-4ba-d19ddd69cbf@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Delete those ancient pr_debug()s - PDprintk()s in Andi Kleen's original
submission of core NUMA API, and useful when debugging shared mempolicy
lifetime back then, but not used recently.
Link: https://lkml.kernel.org/r/f25135-ffb2-40d8-9577-720772b333@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
"man 2 migrate_pages" says "On success migrate_pages() returns the number
of pages that could not be moved". Although 5.3 and 5.4 commits fixed
mbind(MPOL_MF_STRICT|MPOL_MF_MOVE*) to fail with EIO when not all pages
could be moved (because some could not be isolated for migration),
migrate_pages(2) was left still reporting only those pages failing at the
migration stage, forgetting those failing at the earlier isolation stage.
Fix that by accumulating a long nr_failed count in struct queue_pages,
returned by queue_pages_range() when it's not returning an error, for
adding on to the nr_failed count from migrate_pages() in mm/migrate.c. A
count of pages? It's more a count of folios, but changing it to pages
would entail more work (also in mm/migrate.c): does not seem justified.
queue_pages_range() itself should only return -EIO in the "strictly
unmovable" case (STRICT without any MOVEs): in that case it's best to
break out as soon as nr_failed gets set; but otherwise it should continue
to isolate pages for MOVing even when nr_failed - as the mbind(2) manpage
promises.
There's a case when nr_failed should be incremented when it was missed:
queue_folios_pte_range() and queue_folios_hugetlb() count the transient
migration entries, like queue_folios_pmd() already did. And there's a
case when nr_failed should not be incremented when it would have been: in
meeting later PTEs of the same large folio, which can only be isolated
once: fixed by recording the current large folio in struct queue_pages.
Clean up the affected functions, fixing or updating many comments. Bool
migrate_folio_add(), without -EIO: true if adding, or if skipping shared
(but its arguable folio_estimated_sharers() heuristic left unchanged).
Use MPOL_MF_WRLOCK flag to queue_pages_range(), instead of bool lock_vma.
Use explicit STRICT|MOVE* flags where queue_pages_test_walk() checks for
skipping, instead of hiding them behind MPOL_MF_VALID.
Link: https://lkml.kernel.org/r/9a6b0b9-3bb-dbef-8adf-efab4397b8d@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
damon_sysfs_set_targets() had a bug that can result in unexpected memory
usage and monitoring overhead increase. The bug has fixed by a previous
commit. Add a unit test for avoiding a similar bug of future.
Link: https://lkml.kernel.org/r/20231022210735.46409-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When calculating the pseudo-moving access rate, DAMON divides some values
by the maximum nr_accesses. However, due to the type of the related
variables, simple division-based calculation of the divisor can return
zero. As a result, divide-by-zero is possible. Fix it by using
damon_max_nr_accesses(), which handles the case.
Note that this is a fix for a commit that not in the mainline but mm
tree.
Link: https://lkml.kernel.org/r/20231019194924.100347-6-sj@kernel.org
Fixes: ace30fb21a ("mm/damon/core: use pseudo-moving sum for nr_accesses_bp")
Reported-by: Jakub Acs <acsjakub@amazon.de>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When calculating the hotness threshold for lru_prio scheme of
DAMON_LRU_SORT, the module divides some values by the maximum nr_accesses.
However, due to the type of the related variables, simple division-based
calculation of the divisor can return zero. As a result, divide-by-zero
is possible. Fix it by using damon_max_nr_accesses(), which handles the
case.
Link: https://lkml.kernel.org/r/20231019194924.100347-5-sj@kernel.org
Fixes: 40e983cca9 ("mm/damon: introduce DAMON-based LRU-lists Sorting")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org> [6.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When calculating the hotness of each region for the under-quota regions
prioritization, DAMON divides some values by the maximum nr_accesses.
However, due to the type of the related variables, simple division-based
calculation of the divisor can return zero. As a result, divide-by-zero
is possible. Fix it by using damon_max_nr_accesses(), which handles the
case.
Link: https://lkml.kernel.org/r/20231019194924.100347-4-sj@kernel.org
Fixes: 198f0f4c58 ("mm/damon/vaddr,paddr: support pageout prioritization")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org> [5.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When monitoring attributes are changed, DAMON updates access rate of the
monitoring results accordingly. For that, it divides some values by the
maximum nr_accesses. However, due to the type of the related variables,
simple division-based calculation of the divisor can return zero. As a
result, divide-by-zero is possible. Fix it by using
damon_max_nr_accesses(), which handles the case.
Link: https://lkml.kernel.org/r/20231019194924.100347-3-sj@kernel.org
Fixes: 2f5bef5a59 ("mm/damon/core: update monitoring results for new monitoring attributes")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org> [6.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since commit dc68badced ("mm: mlock: update mlock_pte_range to handle
large folio") I've just occasionally seen VM_WARN_ON_FOLIO(folio_test_ksm)
warnings from folio_within_range(), in a splurge after testing with KSM
hyperactive.
folio_referenced_one()'s use of folio_within_vma() is safe because it
checks folio_test_large() first; but allow_mlock_munlock() needs to do the
same to avoid those warnings (or check !folio_test_ksm() itself? Or move
either check into folio_within_range()? Hard to tell without more
examples of its use).
Link: https://lkml.kernel.org/r/23852f6a-5bfa-1ffd-30db-30c5560ad426@google.com
Fixes: dc68badced ("mm: mlock: update mlock_pte_range to handle large folio")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Stefan Roesch <shr@devkernel.io>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When doing compaction, I found the lru_add_drain() is an obvious hotspot
when migrating pages. The distribution of this hotspot is as follows:
- 18.75% compact_zone
- 17.39% migrate_pages
- 13.79% migrate_pages_batch
- 11.66% migrate_folio_move
- 7.02% lru_add_drain
+ 7.02% lru_add_drain_cpu
+ 3.00% move_to_new_folio
1.23% rmap_walk
+ 1.92% migrate_folio_unmap
+ 3.20% migrate_pages_sync
+ 0.90% isolate_migratepages
The lru_add_drain() was added by commit c3096e6782 ("mm/migrate:
__unmap_and_move() push good newpage to LRU") to drain the newpage to LRU
immediately, to help to build up the correct newpage->mlock_count in
remove_migration_ptes() for mlocked pages. However, if there are no
mlocked pages are migrating, then we can avoid this lru drain operation,
especailly for the heavy concurrent scenarios.
So we can record the source pages' mlocked status in
migrate_folio_unmap(), and only drain the lru list when the mlocked status
is set in migrate_folio_move().
In addition, the page was already isolated from lru when migrating, so
checking the mlocked status is stable by folio_test_mlocked() in
migrate_folio_unmap().
After this patch, I can see the hotpot of the lru_add_drain() is gone:
- 9.41% migrate_pages_batch
- 6.15% migrate_folio_move
- 3.64% move_to_new_folio
+ 1.80% migrate_folio_extra
+ 1.70% buffer_migrate_folio
+ 1.41% rmap_walk
+ 0.62% folio_add_lru
+ 3.07% migrate_folio_unmap
Meanwhile, the compaction latency shows some improvements when running
thpscale:
base patched
Amean fault-both-1 1131.22 ( 0.00%) 1112.55 * 1.65%*
Amean fault-both-3 2489.75 ( 0.00%) 2324.15 * 6.65%*
Amean fault-both-5 3257.37 ( 0.00%) 3183.18 * 2.28%*
Amean fault-both-7 4257.99 ( 0.00%) 4079.04 * 4.20%*
Amean fault-both-12 6614.02 ( 0.00%) 6075.60 * 8.14%*
Amean fault-both-18 10607.78 ( 0.00%) 8978.86 * 15.36%*
Amean fault-both-24 14911.65 ( 0.00%) 11619.55 * 22.08%*
Amean fault-both-30 14954.67 ( 0.00%) 14925.66 * 0.19%*
Amean fault-both-32 16654.87 ( 0.00%) 15580.31 * 6.45%*
Link: https://lkml.kernel.org/r/06e9153a7a4850352ec36602df3a3a844de45698.1697859741.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The directory this file is in was renamed but the reference didn't get
updated. Fix it.
Link: https://lkml.kernel.org/r/20231022185619.919397-1-vegard.nossum@oracle.com
Fixes: ee65728e10 ("docs: rename Documentation/vm to Documentation/mm")
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Wu XiangCheng <bobwxc@email.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For compound pages, the head sets the PG_head flag and the tail sets the
compound_head to indicate the head page. If a user allocates a compound
page and frees it with a different order, the compound page information
will not be properly initialized. To detect this problem,
compound_order(page) and the order argument are compared, but this is not
checked when the order argument is zero. That error should be checked
regardless of the order.
Link: https://lkml.kernel.org/r/20231023083217.1866451-1-hyesoo.yu@samsung.com
Signed-off-by: Hyesoo Yu <hyesoo.yu@samsung.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This removes 2 calls to compound_head() and helps convert khugepaged to
use folios throughout.
Previously, if the address passed to collapse_pte_mapped_thp()
corresponded to a tail page, the scan would fail immediately. Using
filemap_lock_folio() we get the corresponding folio back and try to
operate on the folio instead.
Link: https://lkml.kernel.org/r/20231020183331.10770-6-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Also remove count_memcg_page_event now that its last caller no longer uses
it and reword hpage_collapse_alloc_page() to hpage_collapse_alloc_folio().
This removes 1 call to compound_head() and helps convert khugepaged to
use folios throughout.
Link: https://lkml.kernel.org/r/20231020183331.10770-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Both callers of is_refcount_suitable() have been converted to use
folios, so convert it to take in a folio. Both callers only operate on
head pages of folios so mapcount/refcount conversions here are trivial.
Removes 3 calls to compound head, and removes 315 bytes of kernel text.
Link: https://lkml.kernel.org/r/20231020183331.10770-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Replaces 5 calls to compound_head(), and removes 1385 bytes of kernel
text.
Link: https://lkml.kernel.org/r/20231020183331.10770-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Some khugepaged folio conversions", v3.
This patchset converts a number of functions to use folios. This cleans
up some khugepaged code and removes a large number of hidden
compound_head() calls.
This patch (of 5):
Replaces 11 calls to compound_head() with 1, and removes 1348 bytes of
kernel text.
Link: https://lkml.kernel.org/r/20231020183331.10770-1-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20231020183331.10770-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In offline_pages(), if a node becomes memoryless, we will clear its
N_MEMORY state by calling node_states_clear_node(). But we do this
after rebuilding the zonelists by calling build_all_zonelists(), which
will cause this memoryless node to still be in the fallback nodes
(node_order[]) of other nodes.
To drop memoryless nodes from fallback nodes in this case, just call
node_states_clear_node() before calling build_all_zonelists().
In this way, we will not try to allocate pages from memoryless node0,
then the panic mentioned in [1] will also be fixed. Even though this
problem has been solved by dropping the NODE_MIN_SIZE constrain in x86
[2], it would be better to fix it in the core MM as well.
https://lore.kernel.org/all/20230212110305.93670-1-zhengqi.arch@bytedance.com/ [1]
https://lore.kernel.org/all/20231017062215.171670-1-rppt@kernel.org/ [2]
Link: https://lkml.kernel.org/r/9f1dbe7ee1301c7163b2770e32954ff5e3ecf2c4.1697711415.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "handle memoryless nodes more appropriately", v3.
Currently, in the process of initialization or offline memory, memoryless
nodes will still be built into the fallback list of itself or other nodes.
This is not what we expected, so this patch series removes memoryless
nodes from the fallback list entirely.
This patch (of 2):
In find_next_best_node(), we skipped the memoryless nodes when building
the zonelists of other normal nodes (N_NORMAL), but did not skip the
memoryless node itself when building the zonelist. This will cause it to
be traversed at runtime.
For example, say we have node0 and node1, node0 is memoryless
node, then the fallback order of node0 and node1 as follows:
[ 0.153005] Fallback order for Node 0: 0 1
[ 0.153564] Fallback order for Node 1: 1
After this patch, we skip memoryless node0 entirely, then
the fallback order of node0 and node1 as follows:
[ 0.155236] Fallback order for Node 0: 1
[ 0.155806] Fallback order for Node 1: 1
So it becomes completely invisible, which will reduce runtime
overhead.
And in this way, we will not try to allocate pages from memoryless node0,
then the panic mentioned in [1] will also be fixed. Even though this
problem has been solved by dropping the NODE_MIN_SIZE constrain in x86
[2], it would be better to fix it in core MM as well.
[1]. https://lore.kernel.org/all/20230212110305.93670-1-zhengqi.arch@bytedance.com/
[2]. https://lore.kernel.org/all/20231017062215.171670-1-rppt@kernel.org/
[zhengqi.arch@bytedance.com: update comment, per Ingo]
Link: https://lkml.kernel.org/r/7300fc00a057eefeb9a68c8ad28171c3f0ce66ce.1697799303.git.zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/cover.1697799303.git.zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/cover.1697711415.git.zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/157013e978468241de4a4c05d5337a44638ecb0e.1697711415.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add nr_split to trace_mm_migrate_pages for large folio (including THP)
split events.
[akpm@linux-foundation.org: cleanup per Huang, Ying]
Link: https://lkml.kernel.org/r/20231017163129.2025214-2-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
nr_failed was missing the large folio splits from migrate_pages_batch()
and can cause a mismatch between migrate_pages() return value and the
number of not migrated pages, i.e., when the return value of
migrate_pages() is 0, there are still pages left in the from page list.
It will happen when a non-PMD THP large folio fails to migrate due to
-ENOMEM and is split successfully but not all the split pages are not
migrated, migrate_pages_batch() would return non-zero, but
astats.nr_thp_split = 0. nr_failed would be 0 and returned to the caller
of migrate_pages(), but the not migrated pages are left in the from page
list without being added back to LRU lists.
Fix it by adding a new nr_split counter for large folio splits and adding
it to nr_failed in migrate_page_sync() after migrate_pages_batch() is
done.
Link: https://lkml.kernel.org/r/20231017163129.2025214-1-zi.yan@sent.com
Fixes: 2ef7dbb269 ("migrate_pages: try migrate in batch asynchronously firstly")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Acked-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In patch (mm: kmemleak: split __create_object into two functions), the
initialisation of object has been splited in two places. Catalin said it
feels a bit weird and error prone. So leave __alloc_object() to just do
the actual allocation and let __link_object() do the full initialisation.
Link: https://lkml.kernel.org/r/20231023025125.90972-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
delete_object_part() can be called by multiple callers in the same time.
If an object is found and removed by a caller, and then another caller try
to find it too, it failed and return directly. It still be recorded by
kmemleak even if it has already been freed to buddy. With DEBUG on,
kmemleak will report the following warning,
kmemleak: Partially freeing unknown object at 0xa1af86000 (size 4096)
CPU: 0 PID: 742 Comm: test_huge Not tainted 6.6.0-rc3kmemleak+ #54
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x37/0x50
kmemleak_free_part_phys+0x50/0x60
hugetlb_vmemmap_optimize+0x172/0x290
? __pfx_vmemmap_remap_pte+0x10/0x10
__prep_new_hugetlb_folio+0xe/0x30
prep_new_hugetlb_folio.isra.0+0xe/0x40
alloc_fresh_hugetlb_folio+0xc3/0xd0
alloc_surplus_hugetlb_folio.constprop.0+0x6e/0xd0
hugetlb_acct_memory.part.0+0xe6/0x2a0
hugetlb_reserve_pages+0x110/0x2c0
hugetlbfs_file_mmap+0x11d/0x1b0
mmap_region+0x248/0x9a0
? hugetlb_get_unmapped_area+0x15c/0x2d0
do_mmap+0x38b/0x580
vm_mmap_pgoff+0xe6/0x190
ksys_mmap_pgoff+0x18a/0x1f0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Expand __create_object() and move __alloc_object() to the beginning. Then
use kmemleak_lock to protect __find_and_remove_object() and
__link_object() as a whole, which can guarantee all objects are processed
sequentialally.
Link: https://lkml.kernel.org/r/20231018102952.3339837-8-liushixin2@huawei.com
Fixes: 53238a60dd ("kmemleak: Allow partial freeing of memory blocks")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add new __find_and_remove_object() without kmemleak_lock protect, it is in
preparation for the next patch.
Link: https://lkml.kernel.org/r/20231018102952.3339837-7-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The kmemleak object is allocated by mem_pool_alloc(), which could be from
slab or mem_pool[], so it's not suitable using __kmem_cache_free() to free
the object, use __mem_pool_free() instead.
Link: https://lkml.kernel.org/r/20231018102952.3339837-6-liushixin2@huawei.com
Fixes: 0647398a8c ("mm: kmemleak: simple memory allocation pool for kmemleak objects")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__create_object() consists of two part, the first part allocate a kmemleak
object and initialize it, the second part insert it into object tree.
This function need kmemleak_lock but actually only the second part need
lock.
Split it into two functions, the first function __alloc_object only
allocate a kmemleak object, and the second function __link_object() will
initialize the object and insert it into object tree, use the
kmemleak_lock to protect __link_object() only.
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20231018102952.3339837-5-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With 0x%p, the pointer will be hashed and print (____ptrval____) instead.
And with 0x%pa, the pointer can be successfully printed but with duplicate
prefixes, which looks like:
kmemleak: kmemleak_free(0x(____ptrval____))
kmemleak: kmemleak_free_percpu(0x(____ptrval____))
kmemleak: kmemleak_free_part_phys(0x0x0000000a1af86000)
Use 0x%px instead of 0x%p or 0x%pa to print the pointer. Then the print
will be like:
kmemleak: kmemleak_free(0xffff9111c145b020)
kmemleak: kmemleak_free_percpu(0x00000000000333b0)
kmemleak: kmemleak_free_part_phys(0x0000000a1af80000)
Link: https://lkml.kernel.org/r/20231018102952.3339837-4-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Some bugfix about kmemleak", v3.
Some bugfixes for kmemleak and the printed info from debug mode.
This patch (of 7):
Since kmemleak_alloc_phys() rather than kmemleak_alloc() was called from
memblock_alloc_range_nid(), kmemleak_free_part_phys() should be used to
delete kmemleak object in put_page_bootmem(). In debug mode, there are
following warning:
kmemleak: Partially freeing unknown object at 0xffff97345aff7000 (size 4096)
Link: https://lkml.kernel.org/r/20231018102952.3339837-1-liushixin2@huawei.com
Link: https://lkml.kernel.org/r/20231018102952.3339837-2-liushixin2@huawei.com
Fixes: dd0ff4d12d ("bootmem: remove the vmemmap pages from kmemleak in put_page_bootmem")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since all calls use folio_xchg_last_cpupid(), remove
page_cpupid_xchg_last().
Link: https://lkml.kernel.org/r/20231018140806.2783514-20-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert to use folio_xchg_last_cpupid() in wp_page_reuse(), and remove
page variable. Since now only normal and PMD-mapped page is handled by
numa balancing, it's enough to only update the entire folio's last cpupid.
Link: https://lkml.kernel.org/r/20231018140806.2783514-19-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Saves one compound_head() call, also in preparation for
page_cpupid_xchg_last() conversion.
Link: https://lkml.kernel.org/r/20231018140806.2783514-18-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Make finish_mkwrite_fault static since it is not used outside of
memory.c.
Link: https://lkml.kernel.org/r/20231018140806.2783514-17-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert to use folio_xchg_last_cpupid() in __split_huge_page_tail().
Link: https://lkml.kernel.org/r/20231018140806.2783514-16-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert to use folio_xchg_last_cpupid() in folio_migrate_flags(), also
directly use folio_nid() instead of page_to_nid(&folio->page).
Link: https://lkml.kernel.org/r/20231018140806.2783514-15-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use a folio in change_huge_pmd(), which helps to remove last
xchg_page_access_time() caller.
Link: https://lkml.kernel.org/r/20231018140806.2783514-11-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use a folio in change_pte_range() to save three compound_head() calls.
Since now only normal and PMD-mapped page is handled by numa balancing,
it is enough to only update the entire folio's access time.
Link: https://lkml.kernel.org/r/20231018140806.2783514-10-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert to use folio_last_cpupid() in __split_huge_page_tail().
Link: https://lkml.kernel.org/r/20231018140806.2783514-6-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert to use folio_last_cpupid() in do_huge_pmd_numa_page().
Link: https://lkml.kernel.org/r/20231018140806.2783514-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert to use folio_last_cpupid() in do_numa_page().
Link: https://lkml.kernel.org/r/20231018140806.2783514-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A variable is never used for swapout path (shadowp is NULL) and compiler
is unable to optimize out the unneeded load since it's a function call.
The was introduced by 3852f6768e ("mm/swapcache: support to handle the
shadow entries").
Link: https://lkml.kernel.org/r/20231017011728.37508-1-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reimplement get_obj_cgroup_from_current() using current_obj_cgroup().
get_obj_cgroup_from_current() and current_obj_cgroup() share 80% of the
code, so the new implementation is almost trivial.
get_obj_cgroup_from_current() is a convenient function used by the
bpf subsystem, so there is no reason to get rid of it completely.
Link: https://lkml.kernel.org/r/20231019225346.1822282-7-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Similar to slab and kmem, switch to a scope-based protection of the objcg
pointer to avoid.
Link: https://lkml.kernel.org/r/20231019225346.1822282-6-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Switch to a scope-based protection of the objcg pointer on slab/kmem
allocation paths. Instead of using the get_() semantics in the
pre-allocation hook and put the reference afterwards, let's rely on the
fact that objcg is pinned by the scope.
It's possible because:
1) if the objcg is received from the current task struct, the task is
keeping a reference to the objcg.
2) if the objcg is received from an active memcg (remote charging),
the memcg is pinned by the scope and has a reference to the
corresponding objcg.
Link: https://lkml.kernel.org/r/20231019225346.1822282-5-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Keep a reference to the original objcg object for the entire life of a
memcg structure.
This allows to simplify the synchronization on the kernel memory
allocation paths: pinning a (live) memcg will also pin the corresponding
objcg.
The memory overhead of this change is minimal because object cgroups
usually outlive their corresponding memory cgroups even without this
change, so it's only an additional pointer per memcg.
Link: https://lkml.kernel.org/r/20231019225346.1822282-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To charge a freshly allocated kernel object to a memory cgroup, the kernel
needs to obtain an objcg pointer. Currently it does it indirectly by
obtaining the memcg pointer first and then calling to
__get_obj_cgroup_from_memcg().
Usually tasks spend their entire life belonging to the same object cgroup.
So it makes sense to save the objcg pointer on task_struct directly, so
it can be obtained faster. It requires some work on fork, exit and cgroup
migrate paths, but these paths are way colder.
To avoid any costly synchronization the following rules are applied:
1) A task sets it's objcg pointer itself.
2) If a task is being migrated to another cgroup, the least
significant bit of the objcg pointer is set atomically.
3) On the allocation path the objcg pointer is obtained locklessly
using the READ_ONCE() macro and the least significant bit is
checked. If it's set, the following procedure is used to update
it locklessly:
- task->objcg is zeroed using cmpxcg
- new objcg pointer is obtained
- task->objcg is updated using try_cmpxchg
- operation is repeated if try_cmpxcg fails
It guarantees that no updates will be lost if task migration
is racing against objcg pointer update. It also allows to keep
both read and write paths fully lockless.
Because the task is keeping a reference to the objcg, it can't go away
while the task is alive.
This commit doesn't change the way the remote memcg charging works.
Link: https://lkml.kernel.org/r/20231019225346.1822282-3-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: improve performance of accounted kernel memory
allocations", v5.
This patchset improves the performance of accounted kernel memory
allocations by ~30% as measured by a micro-benchmark [1]. The benchmark
is very straightforward: 1M of 64 bytes-large kmalloc() allocations.
Below are results with the disabled kernel memory accounting, the original state
and with this patchset applied.
| | Kmem disabled | Original | Patched | Delta |
|-------------+---------------+----------+---------+--------|
| User cgroup | 29764 | 84548 | 59078 | -30.0% |
| Root cgroup | 29742 | 48342 | 31501 | -34.8% |
As we can see, the patchset removes the majority of the overhead when
there is no actual accounting (a task belongs to the root memory cgroup)
and almost halves the accounting overhead otherwise.
The main idea is to get rid of unnecessary memcg to objcg conversions and
switch to a scope-based protection of objcgs, which eliminates extra
operations with objcg reference counters under a rcu read lock. More
details are provided in individual commit descriptions.
This patch (of 5):
Manually inline memcg_kmem_bypass() and active_memcg() to speed up
get_obj_cgroup_from_current() by avoiding duplicate in_task() checks and
active_memcg() readings.
Also add a likely() macro to __get_obj_cgroup_from_memcg():
obj_cgroup_tryget() should succeed at almost all times except a very
unlikely race with the memcg deletion path.
Link: https://lkml.kernel.org/r/20231019225346.1822282-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20231019225346.1822282-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In current PCP auto-tuning design, if the number of pages allocated is
much more than that of pages freed on a CPU, the PCP high may become the
maximal value even if the allocating/freeing depth is small, for example,
in the sender of network workloads. If a CPU was used as sender
originally, then it is used as receiver after context switching, we need
to fill the whole PCP with maximal high before triggering PCP draining for
consecutive high order freeing. This will hurt the performance of some
network workloads.
To solve the issue, in this patch, we will track the consecutive page
freeing with a counter in stead of relying on PCP draining. So, we can
detect consecutive page freeing much earlier.
On a 2-socket Intel server with 128 logical CPU, we tested
SCTP_STREAM_MANY test case of netperf test suite with 64-pair processes.
With the patch, the network bandwidth improves 5.0%. This restores the
performance drop caused by PCP auto-tuning.
Link: https://lkml.kernel.org/r/20231016053002.756205-10-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
One target of PCP is to minimize pages in PCP if the system free pages is
too few. To reach that target, when page reclaiming is active for the
zone (ZONE_RECLAIM_ACTIVE), we will stop increasing PCP high in allocating
path, decrease PCP high and free some pages in freeing path. But this may
be too late because the background page reclaiming may introduce latency
for some workloads. So, in this patch, during page allocation we will
detect whether the number of free pages of the zone is below high
watermark. If so, we will stop increasing PCP high in allocating path,
decrease PCP high and free some pages in freeing path. With this, we can
reduce the possibility of the premature background page reclaiming caused
by too large PCP.
The high watermark checking is done in allocating path to reduce the
overhead in hotter freeing path.
Link: https://lkml.kernel.org/r/20231016053002.756205-9-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The target to tune PCP high automatically is as follows,
- Minimize allocation/freeing from/to shared zone
- Minimize idle pages in PCP
- Minimize pages in PCP if the system free pages is too few
To reach these target, a tuning algorithm as follows is designed,
- When we refill PCP via allocating from the zone, increase PCP high.
Because if we had larger PCP, we could avoid to allocate from the
zone.
- In periodic vmstat updating kworker (via refresh_cpu_vm_stats()),
decrease PCP high to try to free possible idle PCP pages.
- When page reclaiming is active for the zone, stop increasing PCP
high in allocating path, decrease PCP high and free some pages in
freeing path.
So, the PCP high can be tuned to the page allocating/freeing depth of
workloads eventually.
One issue of the algorithm is that if the number of pages allocated is
much more than that of pages freed on a CPU, the PCP high may become the
maximal value even if the allocating/freeing depth is small. But this
isn't a severe issue, because there are no idle pages in this case.
One alternative choice is to increase PCP high when we drain PCP via
trying to free pages to the zone, but don't increase PCP high during PCP
refilling. This can avoid the issue above. But if the number of pages
allocated is much less than that of pages freed on a CPU, there will be
many idle pages in PCP and it is hard to free these idle pages.
1/8 (>> 3) of PCP high will be decreased periodically. The value 1/8 is
kind of arbitrary. Just to make sure that the idle PCP pages will be
freed eventually.
On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup. This simulates the
kbuild server that is used by 0-Day kbuild service. With the patch, the
build time decreases 3.5%. The cycles% of the spinlock contention (mostly
for zone lock) decreases from 11.0% to 0.5%. The number of PCP draining
for high order pages freeing (free_high) decreases 65.6%. The number of
pages allocated from zone (instead of from PCP) decreases 83.9%.
Link: https://lkml.kernel.org/r/20231016053002.756205-8-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The page allocation performance requirements of different workloads are
usually different. So, we need to tune PCP (per-CPU pageset) high to
optimize the workload page allocation performance. Now, we have a system
wide sysctl knob (percpu_pagelist_high_fraction) to tune PCP high by hand.
But, it's hard to find out the best value by hand. And one global
configuration may not work best for the different workloads that run on
the same system. One solution to these issues is to tune PCP high of each
CPU automatically.
This patch adds the framework for PCP high auto-tuning. With it,
pcp->high of each CPU will be changed automatically by tuning algorithm at
runtime. The minimal high (pcp->high_min) is the original PCP high value
calculated based on the low watermark pages. While the maximal high
(pcp->high_max) is the PCP high value when percpu_pagelist_high_fraction
sysctl knob is set to MIN_PERCPU_PAGELIST_HIGH_FRACTION. That is, the
maximal pcp->high that can be set via sysctl knob by hand.
It's possible that PCP high auto-tuning doesn't work well for some
workloads. So, when PCP high is tuned by hand via the sysctl knob, the
auto-tuning will be disabled. The PCP high set by hand will be used
instead.
This patch only adds the framework, so pcp->high will be set to
pcp->high_min (original default) always. We will add actual auto-tuning
algorithm in the following patches in the series.
Link: https://lkml.kernel.org/r/20231016053002.756205-7-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When a task is allocating a large number of order-0 pages, it may acquire
the zone->lock multiple times allocating pages in batches. This may
unnecessarily contend on the zone lock when allocating very large number
of pages. This patch adapts the size of the batch based on the recent
pattern to scale the batch size for subsequent allocations.
On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup. This simulates the
kbuild server that is used by 0-Day kbuild service. With the patch, the
cycles% of the spinlock contention (mostly for zone lock) decreases from
12.6% to 11.0% (with PCP size == 367).
Link: https://lkml.kernel.org/r/20231016053002.756205-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In page allocator, PCP (Per-CPU Pageset) is refilled and drained in
batches to increase page allocation throughput, reduce page
allocation/freeing latency per page, and reduce zone lock contention. But
too large batch size will cause too long maximal allocation/freeing
latency, which may punish arbitrary users. So the default batch size is
chosen carefully (in zone_batchsize(), the value is 63 for zone > 1GB) to
avoid that.
In commit 3b12e7e979 ("mm/page_alloc: scale the number of pages that are
batch freed"), the batch size will be scaled for large number of page
freeing to improve page freeing performance and reduce zone lock
contention. Similar optimization can be used for large number of pages
allocation too.
To find out a suitable max batch scale factor (that is, max effective
batch size), some tests and measurement on some machines were done as
follows.
A set of debug patches are implemented as follows,
- Set PCP high to be 2 * batch to reduce the effect of PCP high
- Disable free batch size scaling to get the raw performance.
- The code with zone lock held is extracted from rmqueue_bulk() and
free_pcppages_bulk() to 2 separate functions to make it easy to
measure the function run time with ftrace function_graph tracer.
- The batch size is hard coded to be 63 (default), 127, 255, 511,
1023, 2047, 4095.
Then will-it-scale/page_fault1 is used to generate the page
allocation/freeing workload. The page allocation/freeing throughput
(page/s) is measured via will-it-scale. The page allocation/freeing
average latency (alloc/free latency avg, in us) and allocation/freeing
latency at 99 percentile (alloc/free latency 99%, in us) are measured with
ftrace function_graph tracer.
The test results are as follows,
Sapphire Rapids Server
======================
Batch throughput free latency free latency alloc latency alloc latency
page/s avg / us 99% / us avg / us 99% / us
----- ---------- ------------ ------------ ------------- -------------
63 513633.4 2.33 3.57 2.67 6.83
127 517616.7 4.35 6.65 4.22 13.03
255 520822.8 8.29 13.32 7.52 25.24
511 524122.0 15.79 23.42 14.02 49.35
1023 525980.5 30.25 44.19 25.36 94.88
2047 526793.6 59.39 84.50 45.22 140.81
Ice Lake Server
===============
Batch throughput free latency free latency alloc latency alloc latency
page/s avg / us 99% / us avg / us 99% / us
----- ---------- ------------ ------------ ------------- -------------
63 620210.3 2.21 3.68 2.02 4.35
127 627003.0 4.09 6.86 3.51 8.28
255 630777.5 7.70 13.50 6.17 15.97
511 633651.5 14.85 22.62 11.66 31.08
1023 637071.1 28.55 42.02 20.81 54.36
2047 638089.7 56.54 84.06 39.28 91.68
Cascade Lake Server
===================
Batch throughput free latency free latency alloc latency alloc latency
page/s avg / us 99% / us avg / us 99% / us
----- ---------- ------------ ------------ ------------- -------------
63 404706.7 3.29 5.03 3.53 4.75
127 422475.2 6.12 9.09 6.36 8.76
255 411522.2 11.68 16.97 10.90 16.39
511 428124.1 22.54 31.28 19.86 32.25
1023 414718.4 43.39 62.52 40.00 66.33
2047 429848.7 86.64 120.34 71.14 106.08
Commet Lake Desktop
===================
Batch throughput free latency free latency alloc latency alloc latency
page/s avg / us 99% / us avg / us 99% / us
----- ---------- ------------ ------------ ------------- -------------
63 795183.13 2.18 3.55 2.03 3.05
127 803067.85 3.91 6.56 3.85 5.52
255 812771.10 7.35 10.80 7.14 10.20
511 817723.48 14.17 27.54 13.43 30.31
1023 818870.19 27.72 40.10 27.89 46.28
Coffee Lake Desktop
===================
Batch throughput free latency free latency alloc latency alloc latency
page/s avg / us 99% / us avg / us 99% / us
----- ---------- ------------ ------------ ------------- -------------
63 510542.8 3.13 4.40 2.48 3.43
127 514288.6 5.97 7.89 4.65 6.04
255 516889.7 11.86 15.58 8.96 12.55
511 519802.4 23.10 28.81 16.95 26.19
1023 520802.7 45.30 52.51 33.19 45.95
2047 519997.1 90.63 104.00 65.26 81.74
From the above data, to restrict the allocation/freeing latency to be less
than 100 us in most times, the max batch scale factor needs to be less
than or equal to 5.
Although it is reasonable to use 5 as max batch scale factor for the
systems tested, there are also slower systems. Where smaller value should
be used to constrain the page allocation/freeing latency.
So, in this patch, a new kconfig option (PCP_BATCH_SCALE_MAX) is added to
set the max batch scale factor. Whose default value is 5, and users can
reduce it when necessary.
Link: https://lkml.kernel.org/r/20231016053002.756205-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In commit f26b3fa046 ("mm/page_alloc: limit number of high-order pages
on PCP during bulk free"), the PCP (Per-CPU Pageset) will be drained when
PCP is mostly used for high-order pages freeing to improve the cache-hot
pages reusing between page allocating and freeing CPUs.
On system with small per-CPU data cache slice, pages shouldn't be cached
before draining to guarantee cache-hot. But on a system with large
per-CPU data cache slice, some pages can be cached before draining to
reduce zone lock contention.
So, in this patch, instead of draining without any caching, "pcp->batch"
pages will be cached in PCP before draining if the size of the per-CPU
data cache slice is more than "3 * batch".
In theory, if the size of per-CPU data cache slice is more than "2 *
batch", we can reuse cache-hot pages between CPUs. But considering the
other usage of cache (code, other data accessing, etc.), "3 * batch" is
used.
Note: "3 * batch" is chosen to make sure the optimization works on recent
x86_64 server CPUs. If you want to increase it, please check whether it
breaks the optimization.
On a 2-socket Intel server with 128 logical CPU, with the patch, the
network bandwidth of the UNIX (AF_UNIX) test case of lmbench test suite
with 16-pair processes increase 70.5%. The cycles% of the spinlock
contention (mostly for zone lock) decreases from 46.1% to 21.3%. The
number of PCP draining for high order pages freeing (free_high) decreases
89.9%. The cache miss rate keeps 0.2%.
Link: https://lkml.kernel.org/r/20231016053002.756205-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: PCP high auto-tuning", v3.
The page allocation performance requirements of different workloads are
often different. So, we need to tune the PCP (Per-CPU Pageset) high on
each CPU automatically to optimize the page allocation performance.
The list of patches in series is as follows,
[1/9] mm, pcp: avoid to drain PCP when process exit
[2/9] cacheinfo: calculate per-CPU data cache size
[3/9] mm, pcp: reduce lock contention for draining high-order pages
[4/9] mm: restrict the pcp batch scale factor to avoid too long latency
[5/9] mm, page_alloc: scale the number of pages that are batch allocated
[6/9] mm: add framework for PCP high auto-tuning
[7/9] mm: tune PCP high automatically
[8/9] mm, pcp: decrease PCP high if free pages < high watermark
[9/9] mm, pcp: reduce detecting time of consecutive high order page freeing
Patch [1/9], [2/9], [3/9] optimize the PCP draining for consecutive
high-order pages freeing.
Patch [4/9], [5/9] optimize batch freeing and allocating.
Patch [6/9], [7/9], [8/9] implement and optimize a PCP high
auto-tuning method.
Patch [9/9] optimize the PCP draining for consecutive high order page
freeing based on PCP high auto-tuning.
The test results for patches with performance impact are as follows,
kbuild
======
On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup. This simulates the
kbuild server that is used by 0-Day kbuild service.
build time lock contend% free_high alloc_zone
---------- ---------- --------- ----------
base 100.0 14.0 100.0 100.0
patch1 99.5 12.8 19.5 95.6
patch3 99.4 12.6 7.1 95.6
patch5 98.6 11.0 8.1 97.1
patch7 95.1 0.5 2.8 15.6
patch9 95.0 1.0 8.8 20.0
The PCP draining optimization (patch [1/9], [3/9]) and PCP batch
allocation optimization (patch [5/9]) reduces zone lock contention a
little. The PCP high auto-tuning (patch [7/9], [9/9]) reduces build time
visibly. Where the tuning target: the number of pages allocated from zone
reduces greatly. So, the zone contention cycles% reduces greatly.
With PCP tuning patches (patch [7/9], [9/9]), the average used memory
during test increases up to 18.4% because more pages are cached in PCP.
But at the end of the test, the number of the used memory decreases to the
same level as that of the base patch. That is, the pages cached in PCP
will be released to zone after not being used actively.
netperf SCTP_STREAM_MANY
========================
On a 2-socket Intel server with 128 logical CPU, we tested
SCTP_STREAM_MANY test case of netperf test suite with 64-pair processes.
score lock contend% free_high alloc_zone cache miss rate%
----- ---------- --------- ---------- ----------------
base 100.0 2.1 100.0 100.0 1.3
patch1 99.4 2.1 99.4 99.4 1.3
patch3 106.4 1.3 13.3 106.3 1.3
patch5 106.0 1.2 13.2 105.9 1.3
patch7 103.4 1.9 6.7 90.3 7.6
patch9 108.6 1.3 13.7 108.6 1.3
The PCP draining optimization (patch [1/9]+[3/9]) improves performance.
The PCP high auto-tuning (patch [7/9]) reduces performance a little
because PCP draining cannot be triggered in time sometimes. So, the cache
miss rate% increases. The further PCP draining optimization (patch [9/9])
based on PCP tuning restore the performance.
lmbench3 UNIX (AF_UNIX)
=======================
On a 2-socket Intel server with 128 logical CPU, we tested UNIX
(AF_UNIX socket) test case of lmbench3 test suite with 16-pair
processes.
score lock contend% free_high alloc_zone cache miss rate%
----- ---------- --------- ---------- ----------------
base 100.0 51.4 100.0 100.0 0.2
patch1 116.8 46.1 69.5 104.3 0.2
patch3 199.1 21.3 7.0 104.9 0.2
patch5 200.0 20.8 7.1 106.9 0.3
patch7 191.6 19.9 6.8 103.8 2.8
patch9 193.4 21.7 7.0 104.7 2.1
The PCP draining optimization (patch [1/9], [3/9]) improves performance
much. The PCP tuning (patch [7/9]) reduces performance a little because
PCP draining cannot be triggered in time sometimes. The further PCP
draining optimization (patch [9/9]) based on PCP tuning restores the
performance partly.
The patchset adds several fields in struct per_cpu_pages. The struct
layout before/after the patchset is as follows,
base
====
struct per_cpu_pages {
spinlock_t lock; /* 0 4 */
int count; /* 4 4 */
int high; /* 8 4 */
int batch; /* 12 4 */
short int free_factor; /* 16 2 */
short int expire; /* 18 2 */
/* XXX 4 bytes hole, try to pack */
struct list_head lists[13]; /* 24 208 */
/* size: 256, cachelines: 4, members: 7 */
/* sum members: 228, holes: 1, sum holes: 4 */
/* padding: 24 */
} __attribute__((__aligned__(64)));
patched
=======
struct per_cpu_pages {
spinlock_t lock; /* 0 4 */
int count; /* 4 4 */
int high; /* 8 4 */
int high_min; /* 12 4 */
int high_max; /* 16 4 */
int batch; /* 20 4 */
u8 flags; /* 24 1 */
u8 alloc_factor; /* 25 1 */
u8 expire; /* 26 1 */
/* XXX 1 byte hole, try to pack */
short int free_count; /* 28 2 */
/* XXX 2 bytes hole, try to pack */
struct list_head lists[13]; /* 32 208 */
/* size: 256, cachelines: 4, members: 11 */
/* sum members: 237, holes: 2, sum holes: 3 */
/* padding: 16 */
} __attribute__((__aligned__(64)));
The size of the struct doesn't changed with the patchset.
This patch (of 9):
In commit f26b3fa046 ("mm/page_alloc: limit number of high-order pages
on PCP during bulk free"), the PCP (Per-CPU Pageset) will be drained when
PCP is mostly used for high-order pages freeing to improve the cache-hot
pages reusing between page allocation and freeing CPUs.
But, the PCP draining mechanism may be triggered unexpectedly when process
exits. With some customized trace point, it was found that PCP draining
(free_high == true) was triggered with the order-1 page freeing with the
following call stack,
=> free_unref_page_commit
=> free_unref_page
=> __mmdrop
=> exit_mm
=> do_exit
=> do_group_exit
=> __x64_sys_exit_group
=> do_syscall_64
Checking the source code, this is the page table PGD freeing
(mm_free_pgd()). It's a order-1 page freeing if
CONFIG_PAGE_TABLE_ISOLATION=y. Which is a common configuration for
security.
Just before that, page freeing with the following call stack was found,
=> free_unref_page_commit
=> free_unref_page_list
=> release_pages
=> tlb_batch_pages_flush
=> tlb_finish_mmu
=> exit_mmap
=> __mmput
=> exit_mm
=> do_exit
=> do_group_exit
=> __x64_sys_exit_group
=> do_syscall_64
So, when a process exits,
- a large number of user pages of the process will be freed without
page allocation, it's highly possible that pcp->free_factor becomes >
0. In fact, this is expected behavior to improve process exit
performance.
- after freeing all user pages, the PGD will be freed, which is a
order-1 page freeing, PCP will be drained.
All in all, when a process exits, it's high possible that the PCP will be
drained. This is an unexpected behavior.
To avoid this, in the patch, the PCP draining will only be triggered for 2
consecutive high-order page freeing.
On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup. This simulates the
kbuild server that is used by 0-Day kbuild service. With the patch, the
cycles% of the spinlock contention (mostly for zone lock) decreases from
14.0% to 12.8% (with PCP size == 367). The number of PCP draining for
high order pages freeing (free_high) decreases 80.5%.
This helps network workload too for reduced zone lock contention. On a
2-socket Intel server with 128 logical CPU, with the patch, the network
bandwidth of the UNIX (AF_UNIX) test case of lmbench test suite with
16-pair processes increase 16.8%. The cycles% of the spinlock contention
(mostly for zone lock) decreases from 51.4% to 46.1%. The number of PCP
draining for high order pages freeing (free_high) decreases 30.5%. The
cache miss rate keeps 0.2%.
Link: https://lkml.kernel.org/r/20231016053002.756205-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20231016053002.756205-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is only one caller wants to dump the kill victim info, so just let
it call the standalone helper, no need to make the generic info dump
helper take an extra argument for that.
Result of bloat-o-meter:
./scripts/bloat-o-meter ./mm/oom_kill.old.o ./mm/oom_kill.o
add/remove: 0/0 grow/shrink: 1/2 up/down: 131/-142 (-11)
Function old new delta
oom_kill_process 412 543 +131
out_of_memory 1422 1418 -4
dump_header 562 424 -138
Total: Before=21514, After=21503, chg -0.05%
Link: https://lkml.kernel.org/r/20231016113103.86477-1-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Given large enough allocations and a machine with low enough memory (i.e a
default QEMU VM), it's entirely possible that
kmsan_init_alloc_meta_for_range's shadow+origin allocation fails.
Instead of eating a NULL deref kernel oops, check explicitly for
memblock_alloc() failure and panic with a nice error message.
Alexander Potapenko said:
For posterity, it is generally quite important for the allocated shadow
and origin to be contiguous, otherwise an unaligned memory write may
result in memory corruption (the corresponding unaligned shadow write will
be assuming that shadow pages are adjacent). So instead of panicking we
could have split the range into smaller ones until the allocation
succeeds, but that would've led to hard-to-debug problems in the future.
Link: https://lkml.kernel.org/r/20231016153446.132763-1-pedro.falcato@gmail.com
Signed-off-by: Pedro Falcato <pedro.falcato@gmail.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Both callers already have a folio, so pass it in and use it directly.
Removes a lot of hidden calls to compound_head().
Link: https://lkml.kernel.org/r/20231016201114.1928083-13-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Most function calls in hugetlb.c are made with folio arguments. This
brings hugetlb_vmemmap calls inline with them by using folio instead of
head struct page. Head struct page is still needed within these
functions.
The set/clear/test functions for hugepages are also changed to folio
versions.
Link: https://lkml.kernel.org/r/20231011144557.1720481-2-usama.arif@bytedance.com
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Update the internal hugetlb restore vmemmap code path such that TLB
flushing can be batched. Use the existing mechanism of passing the
VMEMMAP_REMAP_NO_TLB_FLUSH flag to indicate flushing should not be
performed for individual pages. The routine
hugetlb_vmemmap_restore_folios is the only user of this new mechanism, and
it will perform a global flush after all vmemmap is restored.
Link: https://lkml.kernel.org/r/20231019023113.345257-9-mike.kravetz@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that a list of pages is deduplicated at once, the TLB flush can be
batched for all vmemmap pages that got remapped.
Expand the flags field value to pass whether to skip the TLB flush on
remap of the PTE.
The TLB flush is global as we don't have guarantees from caller that the
set of folios is contiguous, or to add complexity in composing a list of
kVAs to flush.
Modified by Mike Kravetz to perform TLB flush on single folio if an
error is encountered.
Link: https://lkml.kernel.org/r/20231019023113.345257-8-mike.kravetz@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In an effort to minimize amount of TLB flushes, batch all PMD splits
belonging to a range of pages in order to perform only 1 (global) TLB
flush.
Add a flags field to the walker and pass whether it's a bulk allocation or
just a single page to decide to remap. First value
(VMEMMAP_SPLIT_NO_TLB_FLUSH) designates the request to not do the TLB
flush when we split the PMD.
Rebased and updated by Mike Kravetz
Link: https://lkml.kernel.org/r/20231019023113.345257-7-mike.kravetz@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>