910659763e
Currently, we don't use bucket data type for tracking whether buckets are part of a stripe; parity buckets are BCH_DATA_parity, but data buckets in a stripe are BCH_DATA_user. There's a separate counter, buckets_ec, outside the BCH_DATA_TYPES system for tracking number of buckets on a device that are part of a stripe. The trouble with this approach is that it's too coarse grained, and we need better information on fragmentation for debugging copygc. With this patch, data buckets in a stripe are now tracked as BCH_DATA_stripe buckets. This doesn't yet differentiate between erasure coded and non-erasure coded data in a stripe bucket, nor do we yet track empty data buckets in stripes. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
272 lines
6.4 KiB
C
272 lines
6.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Moving/copying garbage collector
|
|
*
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "alloc_foreground.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_update.h"
|
|
#include "btree_write_buffer.h"
|
|
#include "buckets.h"
|
|
#include "clock.h"
|
|
#include "disk_groups.h"
|
|
#include "errcode.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "eytzinger.h"
|
|
#include "io.h"
|
|
#include "keylist.h"
|
|
#include "lru.h"
|
|
#include "move.h"
|
|
#include "movinggc.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/wait.h>
|
|
|
|
static int bch2_bucket_is_movable(struct btree_trans *trans,
|
|
struct bpos bucket, u64 time, u8 *gen)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bch_alloc_v4 _a;
|
|
const struct bch_alloc_v4 *a;
|
|
int ret;
|
|
|
|
if (bch2_bucket_is_open(trans->c, bucket.inode, bucket.offset))
|
|
return 0;
|
|
|
|
bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, bucket, 0);
|
|
k = bch2_btree_iter_peek_slot(&iter);
|
|
ret = bkey_err(k);
|
|
bch2_trans_iter_exit(trans, &iter);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
a = bch2_alloc_to_v4(k, &_a);
|
|
*gen = a->gen;
|
|
ret = data_type_movable(a->data_type) &&
|
|
a->fragmentation_lru &&
|
|
a->fragmentation_lru <= time;
|
|
|
|
if (ret) {
|
|
struct printbuf buf = PRINTBUF;
|
|
|
|
bch2_bkey_val_to_text(&buf, trans->c, k);
|
|
pr_debug("%s", buf.buf);
|
|
printbuf_exit(&buf);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_copygc_next_bucket(struct btree_trans *trans,
|
|
struct bpos *bucket, u8 *gen, struct bpos *pos)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_lru,
|
|
bpos_max(*pos, lru_pos(BCH_LRU_FRAGMENTATION_START, 0, 0)),
|
|
lru_pos(BCH_LRU_FRAGMENTATION_START, U64_MAX, LRU_TIME_MAX),
|
|
0, k, ({
|
|
*bucket = u64_to_bucket(k.k->p.offset);
|
|
|
|
bch2_bucket_is_movable(trans, *bucket, lru_pos_time(k.k->p), gen);
|
|
}));
|
|
|
|
*pos = iter.pos;
|
|
if (ret < 0)
|
|
return ret;
|
|
return ret ? 0 : -ENOENT;
|
|
}
|
|
|
|
static int bch2_copygc(struct bch_fs *c)
|
|
{
|
|
struct bch_move_stats move_stats;
|
|
struct btree_trans trans;
|
|
struct moving_context ctxt;
|
|
struct data_update_opts data_opts = {
|
|
.btree_insert_flags = BTREE_INSERT_USE_RESERVE|JOURNAL_WATERMARK_copygc,
|
|
};
|
|
struct bpos bucket;
|
|
struct bpos pos;
|
|
u8 gen = 0;
|
|
unsigned nr_evacuated;
|
|
int ret = 0;
|
|
|
|
bch2_move_stats_init(&move_stats, "copygc");
|
|
bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats,
|
|
writepoint_ptr(&c->copygc_write_point),
|
|
false);
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
ret = bch2_btree_write_buffer_flush(&trans);
|
|
BUG_ON(ret);
|
|
|
|
for (nr_evacuated = 0, pos = POS_MIN;
|
|
nr_evacuated < 32 && !ret;
|
|
nr_evacuated++, pos = bpos_nosnap_successor(pos)) {
|
|
ret = bch2_copygc_next_bucket(&trans, &bucket, &gen, &pos) ?:
|
|
__bch2_evacuate_bucket(&trans, &ctxt, bucket, gen, data_opts);
|
|
if (bkey_eq(pos, POS_MAX))
|
|
break;
|
|
}
|
|
|
|
bch2_trans_exit(&trans);
|
|
bch2_moving_ctxt_exit(&ctxt);
|
|
|
|
/* no entries in LRU btree found, or got to end: */
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
|
|
if (ret < 0 && !bch2_err_matches(ret, EROFS))
|
|
bch_err(c, "error from bch2_move_data() in copygc: %s", bch2_err_str(ret));
|
|
|
|
trace_and_count(c, copygc, c, atomic64_read(&move_stats.sectors_moved), 0, 0, 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Copygc runs when the amount of fragmented data is above some arbitrary
|
|
* threshold:
|
|
*
|
|
* The threshold at the limit - when the device is full - is the amount of space
|
|
* we reserved in bch2_recalc_capacity; we can't have more than that amount of
|
|
* disk space stranded due to fragmentation and store everything we have
|
|
* promised to store.
|
|
*
|
|
* But we don't want to be running copygc unnecessarily when the device still
|
|
* has plenty of free space - rather, we want copygc to smoothly run every so
|
|
* often and continually reduce the amount of fragmented space as the device
|
|
* fills up. So, we increase the threshold by half the current free space.
|
|
*/
|
|
unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned dev_idx;
|
|
s64 wait = S64_MAX, fragmented_allowed, fragmented;
|
|
unsigned i;
|
|
|
|
for_each_rw_member(ca, c, dev_idx) {
|
|
struct bch_dev_usage usage = bch2_dev_usage_read(ca);
|
|
|
|
fragmented_allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) *
|
|
ca->mi.bucket_size) >> 1);
|
|
fragmented = 0;
|
|
|
|
for (i = 0; i < BCH_DATA_NR; i++)
|
|
if (data_type_movable(i))
|
|
fragmented += usage.d[i].fragmented;
|
|
|
|
wait = min(wait, max(0LL, fragmented_allowed - fragmented));
|
|
}
|
|
|
|
return wait;
|
|
}
|
|
|
|
void bch2_copygc_wait_to_text(struct printbuf *out, struct bch_fs *c)
|
|
{
|
|
prt_printf(out, "Currently waiting for: ");
|
|
prt_human_readable_u64(out, max(0LL, c->copygc_wait -
|
|
atomic64_read(&c->io_clock[WRITE].now)) << 9);
|
|
prt_newline(out);
|
|
|
|
prt_printf(out, "Currently calculated wait: ");
|
|
prt_human_readable_u64(out, bch2_copygc_wait_amount(c));
|
|
prt_newline(out);
|
|
}
|
|
|
|
static int bch2_copygc_thread(void *arg)
|
|
{
|
|
struct bch_fs *c = arg;
|
|
struct io_clock *clock = &c->io_clock[WRITE];
|
|
u64 last, wait;
|
|
int ret = 0;
|
|
|
|
set_freezable();
|
|
|
|
while (!ret && !kthread_should_stop()) {
|
|
cond_resched();
|
|
|
|
if (kthread_wait_freezable(c->copy_gc_enabled))
|
|
break;
|
|
|
|
last = atomic64_read(&clock->now);
|
|
wait = bch2_copygc_wait_amount(c);
|
|
|
|
if (wait > clock->max_slop) {
|
|
trace_and_count(c, copygc_wait, c, wait, last + wait);
|
|
c->copygc_wait = last + wait;
|
|
bch2_kthread_io_clock_wait(clock, last + wait,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
continue;
|
|
}
|
|
|
|
c->copygc_wait = 0;
|
|
|
|
c->copygc_running = true;
|
|
ret = bch2_copygc(c);
|
|
c->copygc_running = false;
|
|
|
|
wake_up(&c->copygc_running_wq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_copygc_stop(struct bch_fs *c)
|
|
{
|
|
if (c->copygc_thread) {
|
|
kthread_stop(c->copygc_thread);
|
|
put_task_struct(c->copygc_thread);
|
|
}
|
|
c->copygc_thread = NULL;
|
|
}
|
|
|
|
int bch2_copygc_start(struct bch_fs *c)
|
|
{
|
|
struct task_struct *t;
|
|
int ret;
|
|
|
|
if (c->copygc_thread)
|
|
return 0;
|
|
|
|
if (c->opts.nochanges)
|
|
return 0;
|
|
|
|
if (bch2_fs_init_fault("copygc_start"))
|
|
return -ENOMEM;
|
|
|
|
t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
|
|
ret = PTR_ERR_OR_ZERO(t);
|
|
if (ret) {
|
|
bch_err(c, "error creating copygc thread: %s", bch2_err_str(ret));
|
|
return ret;
|
|
}
|
|
|
|
get_task_struct(t);
|
|
|
|
c->copygc_thread = t;
|
|
wake_up_process(c->copygc_thread);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_fs_copygc_init(struct bch_fs *c)
|
|
{
|
|
init_waitqueue_head(&c->copygc_running_wq);
|
|
c->copygc_running = false;
|
|
}
|