linux/fs/bcachefs/movinggc.c
Kent Overstreet 910659763e bcachefs: Mark stripe buckets with correct data type
Currently, we don't use bucket data type for tracking whether buckets
are part of a stripe; parity buckets are BCH_DATA_parity, but data
buckets in a stripe are BCH_DATA_user. There's a separate counter,
buckets_ec, outside the BCH_DATA_TYPES system for tracking number of
buckets on a device that are part of a stripe.

The trouble with this approach is that it's too coarse grained, and we
need better information on fragmentation for debugging copygc.

With this patch, data buckets in a stripe are now tracked as
BCH_DATA_stripe buckets.

This doesn't yet differentiate between erasure coded and non-erasure
coded data in a stripe bucket, nor do we yet track empty data buckets in
stripes.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:09:55 -04:00

272 lines
6.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Moving/copying garbage collector
*
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "btree_iter.h"
#include "btree_update.h"
#include "btree_write_buffer.h"
#include "buckets.h"
#include "clock.h"
#include "disk_groups.h"
#include "errcode.h"
#include "error.h"
#include "extents.h"
#include "eytzinger.h"
#include "io.h"
#include "keylist.h"
#include "lru.h"
#include "move.h"
#include "movinggc.h"
#include "super-io.h"
#include "trace.h"
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
#include <linux/wait.h>
static int bch2_bucket_is_movable(struct btree_trans *trans,
struct bpos bucket, u64 time, u8 *gen)
{
struct btree_iter iter;
struct bkey_s_c k;
struct bch_alloc_v4 _a;
const struct bch_alloc_v4 *a;
int ret;
if (bch2_bucket_is_open(trans->c, bucket.inode, bucket.offset))
return 0;
bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, bucket, 0);
k = bch2_btree_iter_peek_slot(&iter);
ret = bkey_err(k);
bch2_trans_iter_exit(trans, &iter);
if (ret)
return ret;
a = bch2_alloc_to_v4(k, &_a);
*gen = a->gen;
ret = data_type_movable(a->data_type) &&
a->fragmentation_lru &&
a->fragmentation_lru <= time;
if (ret) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, trans->c, k);
pr_debug("%s", buf.buf);
printbuf_exit(&buf);
}
return ret;
}
static int bch2_copygc_next_bucket(struct btree_trans *trans,
struct bpos *bucket, u8 *gen, struct bpos *pos)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret;
ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_lru,
bpos_max(*pos, lru_pos(BCH_LRU_FRAGMENTATION_START, 0, 0)),
lru_pos(BCH_LRU_FRAGMENTATION_START, U64_MAX, LRU_TIME_MAX),
0, k, ({
*bucket = u64_to_bucket(k.k->p.offset);
bch2_bucket_is_movable(trans, *bucket, lru_pos_time(k.k->p), gen);
}));
*pos = iter.pos;
if (ret < 0)
return ret;
return ret ? 0 : -ENOENT;
}
static int bch2_copygc(struct bch_fs *c)
{
struct bch_move_stats move_stats;
struct btree_trans trans;
struct moving_context ctxt;
struct data_update_opts data_opts = {
.btree_insert_flags = BTREE_INSERT_USE_RESERVE|JOURNAL_WATERMARK_copygc,
};
struct bpos bucket;
struct bpos pos;
u8 gen = 0;
unsigned nr_evacuated;
int ret = 0;
bch2_move_stats_init(&move_stats, "copygc");
bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats,
writepoint_ptr(&c->copygc_write_point),
false);
bch2_trans_init(&trans, c, 0, 0);
ret = bch2_btree_write_buffer_flush(&trans);
BUG_ON(ret);
for (nr_evacuated = 0, pos = POS_MIN;
nr_evacuated < 32 && !ret;
nr_evacuated++, pos = bpos_nosnap_successor(pos)) {
ret = bch2_copygc_next_bucket(&trans, &bucket, &gen, &pos) ?:
__bch2_evacuate_bucket(&trans, &ctxt, bucket, gen, data_opts);
if (bkey_eq(pos, POS_MAX))
break;
}
bch2_trans_exit(&trans);
bch2_moving_ctxt_exit(&ctxt);
/* no entries in LRU btree found, or got to end: */
if (ret == -ENOENT)
ret = 0;
if (ret < 0 && !bch2_err_matches(ret, EROFS))
bch_err(c, "error from bch2_move_data() in copygc: %s", bch2_err_str(ret));
trace_and_count(c, copygc, c, atomic64_read(&move_stats.sectors_moved), 0, 0, 0);
return ret;
}
/*
* Copygc runs when the amount of fragmented data is above some arbitrary
* threshold:
*
* The threshold at the limit - when the device is full - is the amount of space
* we reserved in bch2_recalc_capacity; we can't have more than that amount of
* disk space stranded due to fragmentation and store everything we have
* promised to store.
*
* But we don't want to be running copygc unnecessarily when the device still
* has plenty of free space - rather, we want copygc to smoothly run every so
* often and continually reduce the amount of fragmented space as the device
* fills up. So, we increase the threshold by half the current free space.
*/
unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned dev_idx;
s64 wait = S64_MAX, fragmented_allowed, fragmented;
unsigned i;
for_each_rw_member(ca, c, dev_idx) {
struct bch_dev_usage usage = bch2_dev_usage_read(ca);
fragmented_allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) *
ca->mi.bucket_size) >> 1);
fragmented = 0;
for (i = 0; i < BCH_DATA_NR; i++)
if (data_type_movable(i))
fragmented += usage.d[i].fragmented;
wait = min(wait, max(0LL, fragmented_allowed - fragmented));
}
return wait;
}
void bch2_copygc_wait_to_text(struct printbuf *out, struct bch_fs *c)
{
prt_printf(out, "Currently waiting for: ");
prt_human_readable_u64(out, max(0LL, c->copygc_wait -
atomic64_read(&c->io_clock[WRITE].now)) << 9);
prt_newline(out);
prt_printf(out, "Currently calculated wait: ");
prt_human_readable_u64(out, bch2_copygc_wait_amount(c));
prt_newline(out);
}
static int bch2_copygc_thread(void *arg)
{
struct bch_fs *c = arg;
struct io_clock *clock = &c->io_clock[WRITE];
u64 last, wait;
int ret = 0;
set_freezable();
while (!ret && !kthread_should_stop()) {
cond_resched();
if (kthread_wait_freezable(c->copy_gc_enabled))
break;
last = atomic64_read(&clock->now);
wait = bch2_copygc_wait_amount(c);
if (wait > clock->max_slop) {
trace_and_count(c, copygc_wait, c, wait, last + wait);
c->copygc_wait = last + wait;
bch2_kthread_io_clock_wait(clock, last + wait,
MAX_SCHEDULE_TIMEOUT);
continue;
}
c->copygc_wait = 0;
c->copygc_running = true;
ret = bch2_copygc(c);
c->copygc_running = false;
wake_up(&c->copygc_running_wq);
}
return 0;
}
void bch2_copygc_stop(struct bch_fs *c)
{
if (c->copygc_thread) {
kthread_stop(c->copygc_thread);
put_task_struct(c->copygc_thread);
}
c->copygc_thread = NULL;
}
int bch2_copygc_start(struct bch_fs *c)
{
struct task_struct *t;
int ret;
if (c->copygc_thread)
return 0;
if (c->opts.nochanges)
return 0;
if (bch2_fs_init_fault("copygc_start"))
return -ENOMEM;
t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
ret = PTR_ERR_OR_ZERO(t);
if (ret) {
bch_err(c, "error creating copygc thread: %s", bch2_err_str(ret));
return ret;
}
get_task_struct(t);
c->copygc_thread = t;
wake_up_process(c->copygc_thread);
return 0;
}
void bch2_fs_copygc_init(struct bch_fs *c)
{
init_waitqueue_head(&c->copygc_running_wq);
c->copygc_running = false;
}