IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Specifically motivated by adding some docs in `treefile.rs` around
how to add a field, but I decided to just do a pass and
document everything at least a little.
View with e.g. `cargo doc --document-private-items`.
This way we at least get unit test coverage (which...
our unit test coverage doesn't do much because our
main code paths require privileges or virt).
One main blocker to this is that rustc doesn't expose
first-class support for this yet:
https://github.com/rust-lang/rust/issues/39699
At a practical level this works when building in release
mode but fails with `cargo test` for some reason; linker
arguments being pruned? Not sure.
So I was able to use this when composing to find a bug,
but then for some other reason the client
side apparently infinite loops inside libsolv.
So we're not enabling this yet for those reasons, but
let's land the build infrastructure now.
```
(lldb) thread backtrace
* thread #4, name = 'pool-/usr/bin/r'
* frame #0: 0x00007fd61b97200f libc.so.6`__memcpy_sse2_unaligned_erms + 623
frame #1: 0x00007fd61cbc88e6 libasan.so.6`__asan::asan_realloc(void*, unsigned long, __sanitizer::BufferedStackTrace*) + 214
frame #2: 0x00007fd61cc4b725 libasan.so.6`__interceptor_realloc + 245
frame #3: 0x00007fd61baec43e libsolv.so.1`solv_realloc + 30
frame #4: 0x00007fd61baf0414 libsolv.so.1`repodata_add_dirstr + 276
frame #5: 0x00007fd61bb6f755 libsolvext.so.1`end_element + 53
frame #6: 0x00007fd61b05855d libxml2.so.2`xmlParseEndTag1.constprop.0 + 317
frame #7: 0x00007fd61b063548 libxml2.so.2`xmlParseTryOrFinish.isra.0 + 888
frame #8: 0x00007fd61af7ed20 libxml2.so.2`xmlParseChunk + 560
frame #9: 0x00007fd61bb727e7 libsolvext.so.1`solv_xmlparser_parse + 183
frame #10: 0x00007fd61bb5ea0e libsolvext.so.1`repo_add_rpmmd + 254
frame #11: 0x000055a4fce7a5f5 rpm-ostree`::load_filelists_cb(repo=<unavailable>, fp=<unavailable>) at dnf-sack.cpp:444:23
frame #12: 0x000055a4fce7cad6 rpm-ostree`load_ext(_DnfSack*, libdnf::Repo*, _hy_repo_repodata, char const*, char const*, int (*)(s_Repo*, _IO_FILE*), _GError**) at dnf-sack.cpp:430:13
frame #13: 0x000055a4fce7df60 rpm-ostree`dnf_sack_load_repo at dnf-sack.cpp:1789:26
frame #14: 0x000055a4fce7eee9 rpm-ostree`dnf_sack_add_repo at dnf-sack.cpp:2217:28
frame #15: 0x000055a4fce7f0fb rpm-ostree`dnf_sack_add_repos at dnf-sack.cpp:2271:32
frame #16: 0x000055a4fce870ee rpm-ostree`dnf_context_setup_sack_with_flags at dnf-context.cpp:1796:29
frame #17: 0x000055a4fcdf757f rpm-ostree`rpmostree_context_download_metadata at rpmostree-core.cxx:1206:44
frame #18: 0x000055a4fcdf95c3 rpm-ostree`rpmostree_context_prepare at rpmostree-core.cxx:2001:48
frame #19: 0x000055a4fce54ab7 rpm-ostree`rpmostree_sysroot_upgrader_prep_layering at rpmostree-sysroot-upgrader.cxx:1018:38
frame #20: 0x000055a4fcdcb143 rpm-ostree`deploy_transaction_execute(_RpmostreedTransaction*, _GCancellable*, _GError**) at rpmostreed-transaction-types.cxx:1445:49
frame #21: 0x000055a4fcdba4cd rpm-ostree`transaction_execute_thread(_GTask*, void*, void*, _GCancellable*) at rpmostreed-transaction.cxx:340:34
frame #22: 0x00007fd61c58f7e2 libgio-2.0.so.0`g_task_thread_pool_thread + 114
frame #23: 0x00007fd61c3d7e54 libglib-2.0.so.0`g_thread_pool_thread_proxy.lto_priv.0 + 116
frame #24: 0x00007fd61c3d52b2 libglib-2.0.so.0`g_thread_proxy + 82
frame #25: 0x00007fd61b8af3f9 libpthread.so.0`start_thread + 233
frame #26: 0x00007fd61b9c9903 libc.so.6`__clone + 67
(lldb)
```
Forcing use of GCC breaks trying to use `clang -fsanitize=address`.
The real fix here anyways should have been avoiding passing
compiler flags to a compiler that doesn't understand them.
Pretty straightforward. Haven't moved `ror_lockfile_write` yet because
that's trickier to do and I'm still figuring out the most elegant way to
do this within cxx.rs' constraints.
Right now, we're using libdnf APIs from Rust via hand-crafted `extern C`
interfaces, which is extra dangerous because there is no signature
checking that happens at compile-time.
Until either we can automate libdnf bindings or use its C++ API directly
via cxx.rs, let's do some basic wrapping in C++ ourselves and use libdnf
through that API only instead. That gives us a lot more confidence and
makes the libdnf API feel more natural to use in Rust.
We don't need it and it won't work in the unprivileged path where we're
running this in a cosa supermin (of course, this is all a bit silly
because we don't actually need privileges to begin with for this, but
there's a lot of momentum in sticking with that workflow).
Update submodule: libglnx
Now that we inject the `%_dbpath /usr/share/rpm` macro, `rpm -q`
will start using it. But in RPM script invocation, we don't
want them to see any RPM database at all - trying to query it
should be a clean failure.
We lost this at some point during the CI re-shuffle. We need to
constrain cargo builds too to respect our CPU allocation.
This doesn't totally keep all jobs under 5 since e.g. we could have 5
make jobs and 5 cargo codegen builds going at once, but I think as long
as it's not something ridiculous like 40, it should be fine. Otherwise
we'll tighten it more.
Follow-up to previous commit: we had another path where we made a
temporary rootfs and symlinked `/var/lib/rpm` to the base rpmdb. That of
course broke now that we inject a macro to point the rpmdb to
`/usr/share/rpm`.
Rework this to use `/usr/share/rpm` since that's our canonical location
for now, but also add the compat symlinks so that this logic should keep
working even on trees without the injected macro yet.
We don't technically need this yet, but it mirrors how it's set up in
our composes so that if there's code that wants to use the new location
too, it'll just work.
We trigger a librpm macro file load in many of our paths. Since the
default value shipped by rpm's macro file sets `_dbpath` to
`/var/lib/rpm`, we have to explicitly set that back to `/usr/share/rpm`
in those paths.
This became more problematic recently with libsolv v0.7.17 which fully
keys off of `_dbpath` to find the rpmdb path to load:
04d4d036b2
And it's not technically wrong; we really should make that macro not
lie. This is what this patch does by injecting an RPM macro file in our
composes which sets it to /usr/share/rpm. So then e.g. the `rpm` CLI
doesn't actually need the `/var/lib/rpm` backcompat link anymore, though
there's no harm in leaving it.
In the future, we should be able to drop this once we move all of Fedora
to `/usr/lib/sysimage/rpm` (see
https://github.com/coreos/fedora-coreos-tracker/issues/639).
Closes: #2548
Originally the Rust apply-live code was exposed from Rust to C
via bindgen. But when working on that, I hit the problem
that our output infrastructure was C...and the "reverse direction"
binding stuff was just ugly.
This PR again IMO shows the value of the investment in cxx-rs
because we can now seamlessly call back from the Rust side
into a "C++-ish" progress API, which the C++ side is updated
to use.
The level of indirection here is obviously pretty silly
because the main thing on the C++ output side is basically
a function dispatcher, but...I didn't want to try to rework
that into Rust fully yet. (But, the moment we do this
whole area will get a *lot* cleaner)
Anyways, in the end this makes it easy for the apply-live
code to output progress to the user which was sorely
needed.
Our output system is very confusing in that we bridge over
DBus in some cases and not others. In preparation for allowing
Rust code to call into the C++ progress system which contains
that delegation layer, rename the Rust progress to `console_`
to clearly show that it should only be invoked by code that
knows it's writing to a tty.
Having our binary depend on the shared library, which in
turn depends on the binary (at runtime) is messy.
Instead, statically compile the shlib code into our binary.
This duplicates the text a bit, but it's not a lot of code.
The goal is to more easily in the future to e.g. move the
shared library out into a separate git repository entirely
that runs on a separate lifecycle - that would still build
using Automake for example while the main git repository
switches to purely cargo.
Another motivation is avoiding linker issues I had with other
patches due to this semi-cyclical dependency.
So...at some point we somehow lost `-Wall` in our
default compiler flags which means we were missing some
potentially important warnings. And
we used to have `-Werror` on in CI which combined
with the above was strongly opinionated about not
landing warnings in git master.
Our default stance here remains the same; we have
an opinionated set of `-Werror=` that applies in
*all* configurations. However that set moves
into Automake - I don't think we need to do
compiler version detection anymore, we can assume
a modern compiler.
We also add back in `-Wall` by default now.
Further in CI, add `-Werror`. The implementation
here is in our buildsystem rather than
`export CXXFLAGS=-Werror` because unfortunately
we have to fix things in libdnf too, and I don't
want to block entirely on that.
If we get here, it's that we expect the pkgcache to be there. So don't
allow ENOENT (we weren't even checking for the ENOENT case here, which
shows that this was the intent).
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1925584
Previously this function was in `goto out` style
and so we had this awkward "track return value in pointer"
thing. But `clang-analyzer` correctly points out that
we don't need this anymore because we never read the value
initially stored.
The `have_rpmdb` one was a leftover looks like. In the `disabled_all_repos`
case it was clearly there for symmetry, but eh; it seems somewhat
unlikely that we add a *3rd* case there. Also while we're
here change it to C++ `bool` so tools like analyzers know it really
is a boolean.
This fixes some spurious warnings from clang-analyzer (aka `scan-build`) around
"Dead assignment". Unfortunately the analyzer doesn't understand
the side effects of `__attribute__((cleanup))` here.
More info on the `(void)` pattern: https://clang-analyzer.llvm.org/faq.html#dead_store
WITH_SWDB: Removed in 99309fbe04
WITH_GIR Removed in e2f2862bed
Also, most importantly: don't always reconfigure libdnf
This is a questionable default for the cargo `cmake` crate.
Building in Koji is failing I think due to timestamp issues
causing cmake to run twice.
We're running them in Prow now and we're hitting capacity
issues in CentOS CI. Bigger picture, the "just build and unit test"
stuff runs in any cluster, so let's save our bare metal capacity
for our compose/VM testing.
This fixes link dependencies and build-libraries path, in order to
make Rust tests work.
It also introduces an additional wildcard target to allow specifying
a test filter to cargo.
First, the public shared library only depends on a few
things (not the libdnf dependencies) so let's ensure we
only link it to those libraries.
And then, I realized we don't actually need the libdnf
dependencies here - I think I only added those back here
when trying vainly to keep the C unit tests working. But
we don't have those anymore! So we can delete the duplication
and fully rely on Cargo taking care of libdnf.
Conceptually for a static library we don't "link" it against
anything in Automake, that happens at the final stage with
the Rust linker.
This is now further migration towards Cargo/Rust possible
because we switched our main binary. We've had an internal
`libdnf-sys` crate for a while, but now it can take over
the build of the underlying library too (like many `-sys`
crates support).
This itself is just an incremental step towards migrating
the main rpm-ostree build system to e.g. cmake too (or
perhaps directly with the `cc` crate, not sure yet) and
driving it via `cargo` too.
First explicitly state that we're a workspace. AIUI
this is actually implicit today via our use of a `path`
dependency, but in the future we may have other sub-crates.
So let's make it explicit now.
Also move the libdnf dependencies directly to that sub-crate.
Since we need to set HOME and PATH, let's do that in a central
place rather than scattering it around by having all of
our entrypoint scripts source the `libbuild.sh` shell "library".
Move the CoreOS CI entrypoint into a script like the others.
Actually it seems OpenShift sets HOME=/ for some reason; probably
related to the non-root uid default.
And whole lot of the Prow jobs do `export HOME=$(mktemp -d)` today.
I am tempted to add a `cosa entrypoint` command or something
that sanitizes the environment setup.