IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If we know that a PV belongs to some VG and we're missing metadata
(because we have only those PV(s) from VG present in the system that
don't have metadata areas), we should skip such PV when processing
under system ID.
This is because we know that the PV belongs to some VG, but we
really can't decide whether it matches system ID unless the VG
metadata is present again.
The backup_restore_vg is used directly for restoring the VG from backup.
It's also used to do the VG conversions from one metadata format to
another which means vgconvert calls backup_restore_vg too.
When restoring VG from backup, we need to rewrite/write PV headers as
PVs may have been orphans before and now they're becoming part of some
VG - we need to write the PV_EXT_USED flag at least.
When using the backup_restore_vg for vgconvert, we need to write
completely new PV header in different format.
Avoid the special "pv_write" call and handling that was used before
this patch in vgconvert (vgconvert_single function to be more precise)
and reuse existing internal interface to register PV header for writing
(or rewriting) via vg->pvs_to_write list instead like we do it elsewhere
in the code.
This patch also resolves a problem in which PV headers with target
format were written in the vgconvert_single fn as orphans and VG
metadata were added later on - this was a tiny hack actually.
We can't do this now - we need to write the PV as belonging
to a VG because otherwise the PV_EXT_USED flag won't be written
properly (if the PV header is written as orphan, the PV_EXT_USED
is set to 0, of course, even though metadata are attached later).
So this patch removes this tiny inconsistency which was passing
just fine before because we didn't have any relation to the VG
in PV header before. Now we have the PV_EXT_USED flag which says
the "PV is used in some VG".
If we know that the PV is orphan, meaning there's at least one MDA on
that PV which does not reference any VG and at the same time there's
PV_EXT_USED flag set, we're certainly in an inconsistent state and we
need to fix this.
For example, such situation can happen during vgremove/vgreduce if we
removed/reduced the VG, but we haven't written PV headers yet because
vgremove stopped abruptly for whatever reason just before writing new
PV headers with updated state, including PV extension flags (and so the
PV_EXT_USED flag).
However, in case the PV has no MDAs at all, we can't double-check
whether the PV_EXT_USED is correct or not - if that PV is marked
as used, it's either:
- really used (but other disks with MDAs are missing)
- or the error state as described above is hit
User needs to overwrite the PV header directly if it's really clear
the PV having no MDAs does not belong to any VG and at the same time
it's still marked as being in use (pvcreate -ff <dev_name> will fix this).
For example - /dev/sda here has 1 MDA, orphan and is incorrectly marked
with PV_EXT_USED flag:
$ pvs --binary -o+pv_in_use
WARNING: Found inconsistent standalone Physical Volumes.
WARNING: Repairing flag incorrectly marking Physical Volume /dev/sda as used.
PV VG Fmt Attr PSize PFree InUse
/dev/sda lvm2 --- 128.00m 128.00m 0
Make sure we won't use a PV that is already marked as used. Normally,
VG metadata would stop us from doing that, but we can run into a
situation where such metadata is missing because PVs with MDAs
are missing and the PVs left are the ones with 0 MDAs.
(/dev/sda in this example has 0 MDAs and it belongs to a VG,
but other PVs with MDA are missing)
$ pvs -o pv_name,pv_mda_count /dev/sda
PV #PMda
/dev/sda 0
$ pvcreate /dev/sda
PV '/dev/sda' is marked as belonging to a VG but its metadata is missing.
Can't initialize PV '/dev/sda' without -ff.
$ pvchange -u /dev/sda
PV '/dev/sda' is marked as belonging to a VG but its metadata is missing.
Can't change PV '/dev/sda' without -ff.
Physical volume /dev/sda not changed
0 physical volumes changed / 1 physical volume not changed
$ pvremove /dev/sda
PV '/dev/sda' is marked as belonging to a VG but its metadata is missing.
(If you are certain you need pvremove, then confirm by using --force twice.)
$ vgcreate vg /dev/sda
Physical volume '/dev/sda' is marked as belonging to a VG but its metadata is missing.
Unable to add physical volume '/dev/sda' to volume group 'vg'.
This is a hotfix for a bug introduced in
6d7dc87cb3.
The bug description: First we allocate memory for
processing handle (at an address 1) then we
allocate some memory on the same pool for later use
in pvmove_poll function inside the process_each_pv
function (at an address 2). After we jump out of
process_each_pv we called destroy_processing_handle.
As a result of destroying the handle memory pool could
deallocate all memory at address 1 or higher. The
pvmove_poll function tried to copy a memory allocated
at address 2 that could be returned to the system.
If it was so it led to segfault.
We need to rethink proper fix but in the same time
cmd->mem pool is recreated per each lvm command so
this should not cause problems even when we run
multiple commands in lvm shell.
A valgrind snapshot of the corruption:
Invalid read of size 1
at 0x4C29F92: strlen (mc_replace_strmem.c:403)
by 0x5495F2E: dm_pool_strdup (pool.c:51)
by 0x1592A7: _create_id (pvmove.c:774)
by 0x159409: pvmove_poll (pvmove.c:796)
by 0x1599E3: pvmove (pvmove.c:931)
by 0x15105B: lvm_run_command (lvmcmdline.c:1655)
by 0x1523C3: lvm2_main (lvmcmdline.c:2121)
by 0x1754F3: main (lvm.c:22)
Address 0xf15df8a is 138 bytes inside a block of size 8,192 free'd
at 0x4C28430: free (vg_replace_malloc.c:446)
by 0x5494E73: dm_free_wrapper (dbg_malloc.c:357)
by 0x5495DE2: _free_chunk (pool-fast.c:318)
by 0x549561C: dm_pool_free (pool-fast.c:151)
by 0x164451: destroy_processing_handle (toollib.c:1837)
by 0x1598C1: pvmove (pvmove.c:903)
by 0x15105B: lvm_run_command (lvmcmdline.c:1655)
by 0x1523C3: lvm2_main (lvmcmdline.c:2121)
by 0x1754F3: main (lvm.c:22)
Fix regression caused by c9f021de0b.
This commit actually transfered real-action (e.g. device removal)
into the next loop which has however missed to check for break.
So add check for break also there.
When creating a list in 'context of command' - use proper mempool.
vg->vgmem is mempool related to VG metadata - and can be eventually
locked read-only when VG struct is shared.
The extent size must fits all blocks in 4294967295 sectors
(in 512b units) this is 1/2 KiB less then 2TiB.
So while previous statement 'suggested' 2TiB is still acceptable value,
make it clear it's not.
As now we support any multiples of 128KB as extent size -
values like 2047G will still 'flow-in' otherwise the largest power-of-2
supported value is 1TiB.
With 1TiB user needs 8388608 extents for 8EiB device.
(FYI such device is already unusable with todays glibc-2.22.90-27)
4GiB extent size is currently the smallest extent size which allows
a user to create 8EiB devices (with 2GiB it's less then 8EiB).
TODO: lvm2 may possibly print amount of 'lost/unused space' on a PV,
since using such ridiculously sized extent size may result in huge
space being left unaccessible.
Add a comment in _process_pvs_in_vg() to document the
place where there have been problems with processing
PVs twice.
For a while we had a hacky workaround here where we'd
skip processing a PV if its device wasn't found in
all_devices (and !is_missing_pv since we want to
process PVs with missing devices.). That workaround
was removed in commit 5cd4d46f because it was no
longer needed.
The workaround had originally been needed to prevent
a device from being processed twice when the PV had
no MDAs -- it would be processed once in its real VG
and then the workaround would prevent it from being
processed a second time in the orphan VG.
Wrongly appearing as an orphan likely happened because
lvmcache would consider the no-MDA PV an orphan unless
the real VG holding that PV was also in lvmcache.
This issue is also mentioned in pvchange where holding
the global lock allows VGs to remain in lvmcache so
PVs with 0 mdas are not considered orphans.
The workaround in _process_pvs_in_vg() was originally
intended for reporting commands, not for pvchange.
But, it was accidentally helping pvchange also because
the method described by the pvchange global lock
comment had been subverted by commit 80f4b4b8.
Commit 80f4b4b8 was found to be unnecessary, and was
reverted in commit e710bac0. This restored the
intended global lock lvmcache effect to pvchange, and
it no longer relied on the workaround in toollib.
Previously, pvmove used the function find_pv_in_vg() which did the
equivalent of process_each_pv() by doing:
find_pv_by_name() -> get_pvs() ->
get_pvs_internal() -> _get_pvs() -> get_vgids() ->
/* equivalent to process_each_pv */
dm_list_iterate_items(vgids)
vg = vg_read_internal()
dm_list_iterate_items(&vg->pvs)
With the found 'pv', it would do vg_read() on pv_vg_name(pv),
and then do the actual pvmove processing.
This commit simplifies by using process_each_pv() and putting
the actual pvmove processing into the "single" function.
This eliminates both find_pv_by_name() and the vg_read().
The processing code that followed vg_read remains the same.
The return code for the pvmove command is not based on the
process_each_pv return code, but is based on the success/fail
conditions in the existing code.
When an orphan PV is changed/resized, the
lvmlockd global lock is converted from sh
to ex. If the command is changing two
orphan PVs, the conversion to ex should
be done only once.
The problem addressed by this workaround no longer
seems to exist, so remove it. PVs with no mdas
no longer appear in both their actual VG and in
the orphan VG.
Use process_each_vg() to lock and read the old VG,
and then call the main vgrename code.
When real VG names are used (not a UUID in place of the
old name), the command still pre-locks the new name
(when strcmp wants it locked first), before calling
process_each_vg on the old name.
In the case where the old name is replaced with a UUID,
process_each_vg now translates that UUID into the real
VG name, which it locks and reads. In this case, we
cannot do pre-locking to maintain lock ordering because
the old name is unknown. So, in this case the strcmp
based lock ordering is suppressed and the old name is
always locked first. This opens a remote chance for
lock ordering conflict between racing vgrenames between
two names where one or both commands use the UUID.
Also always clear the internal lvmcache after rescanning, and
reinstate a test for --trustcache so that 'pvs --trustcache'
(for example) avoids rescanning.
Before commit c1f246fedf,
_get_all_devices() did a full device scan before
get_vgnameids() was called. The full scan in
_get_all_devices() is from calling dev_iter_create(f, 1).
The '1' arg forces a full scan.
By doing a full scan in _get_all_devices(), new devices
were added to dev-cache before get_vgnameids() began
scanning labels. So, labels would be read from new devices.
(e.g. by the first 'pvs' command after the new device appeared.)
After that commit, _get_all_devices() was called
after get_vgnameids() was finished scanning labels.
So, new devices would be missed while scanning labels.
When _get_all_devices() saw the new devices (after
labels were scanned), those devices were added to
the .cache file. This meant that the second 'pvs'
command would see the devices because they would be
in .cache.
Now, the full device scan is factored out of
_get_all_devices() and called by itself at the
start of the command so that new devices will
be known before get_vgnameids() scans labels.
In general, --select should be used to specify a VG by UUID,
but vgrename already allows a uuid to be substituted for
the name, so continue to allow it in that case.
If the VG arg from the command line does not match the
name of any known VGs, then check if the arg looks like
a UUID. If it's a valid UUID, then compare it to the
UUID of known VGs. If it matches the UUID of a known VG,
then process that VG.
Pass the single vgname as a new process_each_vg arg
instead of setting a cmd flag to tell process_each_vg
to take only the first vgname arg from argv.
Other commands with different argv formats will be
able to use it this way.
If two different VGs with the same name exist on the system,
a command that just specifies that ambiguous name will fail
with a new error:
$ vgs -o name,uuid
...
foo qyUS65-vn32-TuKs-a8yF-wfeQ-7DkF-Fds0uf
foo vfhKCP-mpc7-KLLL-Uh08-4xPG-zLNR-4cnxJX
$ lvs foo
Multiple VGs found with the same name: foo
Use the --select option with VG UUID (vg_uuid).
$ vgremove foo
Multiple VGs found with the same name: foo
Use the --select option with VG UUID (vg_uuid).
$ lvs -S vg_uuid=qyUS65-vn32-TuKs-a8yF-wfeQ-7DkF-Fds0uf
lv1 foo ...
This is implemented for process_each_vg/lv, and works
with or without lvmetad. It does not work for commands
that do not use process_each.
This change includes one exception to the behavior shown
above. If one of the VGs is foreign, and the other is not,
then the command assumes that the intended VG is the local
one and uses it.
This makes process_each_vg/lv always use the list of
vgnames on the system. When specific VGs are named on
the command line, the corresponding entries from
vgnameids_on_system are moved to vgnameids_to_process.
Previously, when specific VGs were named on the command
line, the vgnameids_on_system list was not created, and
vgnameids_to_process was created from the arg_vgnames
list (which is only names, without vgids).
Now, vgnameids_on_system is always created, and entries
are moved from that list to vgnameids_to_process -- either
some (when arg_vgnames specifies only some), or all (when
the command is processing all VGs, or needs to look at
all VGs for checking tags/selection).
This change adds one new lvmetad lookup (vg_list) to a
command that specifies VG names. It adds no new work
for other commands, e.g. non-lvmetad commands, or
commands that look at all VGs.
When using lvmetad, 'lvs foo' previously sent one
request to lvmetad: 'vg_lookup foo'.
Now, 'lvs foo' sends two requests to lvmetad:
'vg_list' and 'vg_lookup foo <uuid>'.
(The lookup can now always include the uuid in the request
because the initial vg_list contains name/vgid pairs.)
Just for convenience to display all new configuration settings
introduced since given version (before, there was only --atversion
to display settings introduced in concrete version).
For example:
$ lvmconfig --type new --sinceversion 2.2.120
allocation {
# cache_mode="writethrough"
# cache_settings {
# }
}
global {
use_lvmlockd=0
# lvmlockd_lock_retries=3
# sanlock_lv_extend=256
use_lvmpolld=1
}
activation {
}
# report {
# compact_output_cols=""
# time_format="%Y-%m-%d %T %z"
# }
local {
# host_id=0
}
Avoid internal error message where thin pool repair code tries to
fix cache pool - was catched later in code stack, so rather
catch this early and make the repair function exlusive
to thin pools.
So far we have no code for repairing cache pools
(other then the automatic during activation/deactivation).
Add missing display_lvname in _lvconvert_merge_thin_snapshot().
Also when we detect missing origin, report Internal error,
which would likely be the primary fault here
(and avoid dereft of NULL origin as noticed by Coverity).
When the first arg is a UUID and vgrename translates
that UUID to a current VG name, the old and new VG
names are not being checked for equality. If they
are equal, it produces an internal error rather than
a proper error.
Coverity here is not fully-in-picture - but please it
with validation of pointer which currently cannot be null,
since we always return at least empty string.
This option could never have been printed in lvm2 metadata, so it could
be safely removed as it could have been set only as 0.
These configurable setting is supported via metadata profile.
The recent addition to check for PVs that were
missed during the first iteration of processing
was unintentionally catching duplicate PVs because
duplicates were not removed from the all_devices
list when the primary dev was processed.
Also change a message from warn back to verbose.
If a VG is removed between the time that 'vgs'
or 'lvs' (with no args) creates the list of VGs
and the time that it reads the VG to process it,
then ignore the removed VG; don't report an error
that it could not be found, since it wasn't named
by the command.
PVs could be missing from the 'pvs' output if
their VG was removed at the same time that the
'pvs' command was run. To fix this:
1. If a VG is not found when processed, don't
silently skip the PVs in it, as is done when
the "skip" variable is set.
2. Repeat the VG search if some PVs are not
found on the first search through all VGs.
The second search uses a specific list of
PVs that were missed the first time.
testing:
/dev/sdb is a PV
/dev/sdd is a PV
/dev/sdg is not a PV
each test begins with:
vgcreate test /dev/sdb /dev/sdd
variations to test:
vgremove -f test & pvs
vgremove -f test & pvs -a
vgremove -f test & pvs /dev/sdb /dev/sdd
vgremove -f test & pvs /dev/sdg
vgremove -f test & pvs /dev/sdb /dev/sdg
The pvs command should always display /dev/sdb
and /dev/sdd, either as a part of VG test or not.
The pvs command should always print an error
indicating that /dev/sdg could not be found.
Commit 1a74171ca5 added
a check to ignore a VG that was FAILED_INCONSISTENT
if the command doesn't care if the VG is not found.
Remove that check because that case is never reached
by the current code.
The ONE_VGNAME_ARG was being passed and tested as
vg_read() flag but it's a cmd struct flag.
(It affects command arg processing in toollib,
not vg_read behavior. Flags related to command
processing are generally cmd struct flags, while
vg_read arg flags are generally related to vg_read
behavior.)
Running "vgremove -f VG & pvs" results in the pvs
command reporting that the VG is not found or is
inconsistent. If the VG is gone or being removed,
the pvs command should just skip it and not print
errors about it.
"Not found" is because the pvs command created the
list of VGs to process, including VG, then vgremove
removed the VG, then the pvs command came to to read
the VG to process it and did not find it.
An "inconsistent" error could be reported if vgremove
had only partially completed removing VG when pvs did
vg_read on the VG to process it, causing pvs to find
the VG in a partially-removed state.
This fix adds a flag that pvs uses to ignore a VG
that can't be read or is inconsistent.
Make lvm2_disable_dmeventd_monitoring() more explicit.
As memlock_inc_daemon() is also used by clvmd, which
does changes dmeventd and suspend ignore state at
some stages - make updates of these 2 variable
tied to the call of lvm2_disable_dmeventd_monitoring().
Once this call is made dmeventd monitoring
and suspended devices are ignored.
TODO: all lvm-global settings should really be moved
to command context.
CONVERTING status flag is a tricky one. It's not set when converting
a non-mirror LV type to the mirror type, i.e.: linear -> two leg mirror.
Also the conversion itself is instant and doesn't require to be polled.
When mirror reaches sync state there's no final update on VG metadata
for lvmpolld to be made thereby report_progress in fact doesn't report
percentage of mirror being converted but percentage of mirror
being in sync. Perhaps we should reword the lvconvert output here.
On the other hand CONVERTING is set while we upconvert the mirror
from i.e. two leg mirror to four leg mirror. In such case the operation
is required to be polled so that lvmpolld can cleanup temporary
conversion log when the conversion is over.
Ignore CONVERTING lv_type for the moment and match LVs only by uuids
during 'mirror conversion'/'waiting for a sync to finish'.
The old code made two loops through the PVs: in the first
loop it found the max PV and VG name lengths, and in the
second loop it printed each PV using the name lengths as
field widths for aligning columns.
The new code uses process_each_pv() which makes one loop
through the PVs. In the *first* call to pvscan_single(),
the max name lengths are found by looping through the
lvmcache entries which have been populated by the generic
process_each code prior to calling any _single functions.
Subsequent calls to pvscan_single() reuse the max lengths
that were found by the first call.
The new report/compact_output_cols setting has exactly the same effect
as report/compact_output setting. The difference is that with the new
setting it's possible to define which cols should be compacted exactly
in contrast to all cols in case of report/compact_output.
In case both compact_output and compact_output_cols is enabled/set,
the compact_output prevails.
For example:
$ lvmconfig --type full report/compact_output report/compact_output_cols
compact_output=0
compact_output_cols=""
$ lvs vg
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
lvol0 vg -wi-a----- 4.00m
---
$ lvmconfig --type full report/compact_output report/compact_output_cols
compact_output=0
compact_output_cols="data_percent,metadata_percent,pool_lv,move_pv,origin"
$ lvs vg
LV VG Attr LSize Log Cpy%Sync Convert
lvol0 vg -wi-a----- 4.00m
---
$ lvmconfig --type full report/compact_output report/compact_output_cols
compact_output=1
compact_output_cols="data_percent,metadata_percent,pool_lv,move_pv,origin"
$ lvs vg
LV VG Attr LSize
lvol0 vg -wi-a----- 4.00m
If 'vgcreate --shared' finds both sanlock and dlm are running,
print a more accurate error message:
"Found multiple lock managers, select one with --lock-type."
When neither is running, we still print:
"Failed to detect a running lock manager to select lock type."
Using --lock-type sanlock|dlm implies --shared.
Using --shared selects lock type sanlock|dlm
(by choosing the one that's running.)
Using both --shared and --lock-type sanlock|dlm should
also be allowed (--shared is just redundant information.)
When user specifies '--force' with remove/remove_all/wipe_table
use '--noflush --nolockfs' resume flags, so the operation
will not block when device underneath is blocked.
Since we may want to swap names when LVs are complex types, we cannot
avoid doing full renames on both LV stacks.
Temporarily use 'pvmove_tmeta' as unused name to prevent validation troubles.
ATM allocation can't handle stripping and cache pool allocation.
It's not yet even clear what should be actually result.
Until resolved, disable this option (it's been coredumping
inside allocation anyway).
Certain stacks of cached LVs may have unexpected consequences.
So add a warning function called when LV is cached to detect
such caces and WARN user about them - the best we could do ATM.
Add a new arg to lockd_start_vg() that indicates
it is being called for a new lockd VG, so that
lvmlockd knows the lockspace being started is new.
(Will be used by a following commit.)
Commit f6473baffc introduced a new
cmd->initialized variable to keep info about which parts of the
cmd_context have been initialized.
A part of this patch was also a change in refresh_filters fn
which checks for cmd->initialized.filters variable and it does
the filter refresh *only* if the filter has already been initialized
before otherwise it's a NOOP (before, the refresh_filters also
initialized filters as a side effect in case it had not been
initialized before which was not quite correct).
However, the commit f6473baffc
did not handle the case in which configuration changes
either via --config argument or when configuration file changed
and its timestamp was higher than the timestamp of the persistent
cache file - the /etc/lvm/cache/.cache.
This patch fixes this issue and it causes the init_filters fn
in lvm_run_command fn to be called with proper value of
"load_persistent_cache" switch even if the configuration changes,
hence causing the persistent cache file to be ignored in this
case.
Replace the histogram stats subcommand with a --histogram switch
to enable histogram related fields for both list and report output.
To avoid overloading the existing --histogram rename it to --bounds:
this is also a better description of the option.
Improve the names and labels of stats reports columns, ensure that
the minimum field widths allow unambiguos labels to be shown and
update the man page descriptions of these fields.
Add support to dmstats to create and report histograms.
Add a --histogram switch to 'create' that accepts a string
description of bin boundaries and DR_STATS and DR_STATS_META fields
to report bin configuration and absolute and relative histogram
values:
hist_bins
hist_bounds
hist_ranges
hist_count
hist_count_bounds
hist_count_ranges
hist_percent
hist_percent_bounds
hist_percent_ranges
A new 'histogram' subcommand displays a report that emphasizes
histogram data as either counters or percentage values.
Add support for creating, parsing, and reporting dm-stats latency
histograms on kernels that support precise_timestamps.
Histograms are specified as a series of time values that give the
boundaries of the bins into which I/O counts accumulate (with
implicit lower and upper bounds on the first and last bins).
A new type, struct dm_histogram, is introduced to represent
histogram values and bin boundaries.
The boundary values may be given as either a string of values (with
optional unit suffixes) or as a zero terminated array of uint64_t
values expressing boundary times in nanoseconds.
A new bounds argument is added to dm_stats_create_region() which
accepts a pointer to a struct dm_histogram initialised with bounds
values.
Histogram data associated with a region is parsed during a call to
dm_stats_populate() and used to build a table of histogram values
that are pointed to from the containing area's counter set. The
histogram for a specified area may then be obtained and interogated
for values and properties.
This relies on kernel support to provide the boundary values in
a @stats_list response: this will be present in 4.3 and 4.2-stable. A
check for a minimum driver version of 4.33.0 is implemented to ensure
that this is present (4.32.0 has the necessary precise_timestamps and
histogram features but is unable to report these via @stats_list).
Access methods are provided to retrieve histogram values and bounds
as well as simple string representations of the counts and bin
boundaries. Methods are also available to return the total count
for a histogram and the relative value (as a dm_percent_t) of a
specified bin.
Remove the existing lock type using the same functions
used to remove the lockd components during vgremove.
This results in a "clean" VG and lvmlockd state after
the vgchange, i.e. no bits left over from previous
lock type.
Originally when vgdisplay encountered an exported VG it issued a
WARNING. Commit d6b1de30 replaced this with an error message
but still exited with success (incorrect). A backtrace was recently
added in commit b193809987.
As vgdisplay already states that the VG is exported in its output,
just drop these messages completely.
All cache args could be specified when caching LV
(means converting LV to cached).
When --cachemode arg is given during cache-pool conversion,
store it in the metadata.
https://bugzilla.redhat.com/show_bug.cgi?id=1255184
Add support for the kernel precise_timestamps feature. This allows
regions to be created using counters with nanosecond precision.
A new dm_stats method, dm_stats_set_precise_timestamps() causes all
future regions created with this handle to attempt to enable precise
counters.
The unlock call will fail in expected and normal cases,
and should not cause the command to fail. (An actual
unlock in the lock manager should never fail.)
The timerfd guarantees that it will return 8 bytes when a read(2)
is issued (a uint64_t giving the number of timer events during the
call). Check that it does so and log a non-fatal error if the byte
count is not 8.
Commit f10ad95 introduced a regression causing the size of regions
passed in on the command line to be truncated to zero. Initialise
the 'this_len' variable to the supplied length to correct this.
Commit f10ad95 introduced a regression in the calculation of the
number of areas in a region created with the --areasize switch:
vg_hex-lv_home: Created new region with 0 area(s) as region ID 1
vg_hex-lv_swap: Created new region with 0 area(s) as region ID 1
Fis this by using the correct region size when calculating the
value.
When dmstats is run with -v or higher enable a per-area reporting
mode for statistics regions. This will output one row per area
(rather than one row per region) and adds additional fields of use
when viewing areas:
area_id - index within the region assigned by libdm-stats
area_start - the start location of the area in the containing
device.
Add a '--raw' switch to stats reports that causes us to report the
basic counter values rather than derived metrics for each visible
statistics region.
Add prefixes to all dmsetup report types to allow the 'group_all'
option to be effective:
DR_NAME name_
DR_INFO info_
DR_DEPS deps_
DR_TREE tree_
DR_NAME splitname_
When run with full verbosity dmsetup or dmstats reports will
output a figure that tracks a moving average over a window of the
last two intervals:
Interval #3 time delta: 999991087ns
Interval #3 mean duration: 999907064ns, current err: -8913ns
End interval #3 duration: 999991087ns
Adjusted sample interval duration: 999991087ns
Due to the narrow window this is a very crude estimate and is only
of use to someone debugging or modifying the stats clock: remove
the value and the global variables used to track it.
Anyone with a particular use for this information can construct a
better mean by calculating the value of a greater number of
intervals.
Unlike 'info -c' and 'stats report' the 'dmstats list' subcommand
does its own report processing. This complicates the handling of
the DR_STATS and DR_STATS_META fields and leads to inconsistent
behaviour between the different commands. In particular it causes
'stats list' to segfault when using 'all' field options:
Segmentation fault (core dumped)
Delete _stats_list() entirely and adapt _stats_report so that it
can correctly format a DR_STATS_META-only report request.
This requires passing the subcommand into _report_init() where it
is used in addition to the command name to select the default set
of report fields for the 'list' and 'report' stats subcommands.
With this change both 'list' and 'report' dmstats report will use
the correct report object type and ensure that it is initialised
appropriately for the field selection in use.
Although statistics and meta fields (region and area properties) share
the same object type the state of the handle they expect differs: meta
only expects a dm_stats_list() operation to have been performed whereas
statistics require a fully populated handle.
Distinguish between these requirements by separating the fields into
two distinct report types:
DR_STATS = 32,
DR_STATS_META = 64
The new category is described as "Mapped Device Statistics Region
Information" in the help text.
Make the use of the this_start and this_len variables easier to
follow and clarify the use of zero start and len arguments to
request a whole-device region.
Add a pair of fields to expose the current per-interval duation
estimate. The 'interval' field provides a real value in units of
seconds and the 'interval_ns' field provides the same quantity
expressed as a whole number of nanoseconds.
Introduce enums and global variables to record cleanly which command we
are processing and eliminate the historically inconsistent use of the
shifted argv[0] and fix assorted bugs discovered along the way.
Add dm_report_is_empty() to indicate there is no data awaiting output
and use this to suppress dmsetup report headings when no data is output
so we don't get a stray line saying 'Help' at the end of reporting help.
Define a report type (as the interface requires) so -o all selects
the right fields in splitname. (A fix for stats list will follow.)
Exit immediately if no device is supplied to dmsetup wipe_table instead
of hitting errors later and failing.
Adjust the command name printed in usage/help output to match command
invoked (most of the time).
The '--force' switch is only used by dmstats to allow either
creation or deletion of one or more regions on all devices.
These operations do not carry any risk: just a possible mess of
region IDs to be cleaned up.
Remove the use of '--force' for stats commands and change current
uses to a new '--alldevices' switch.
The region creation message just outputs the new region_id, e.g.:
Created region: 0
This is fine when the device is unambigous (as above) but produces
unhelpful output when creating multiple regions, or regions on
multiple devices:
Created region: 0
Created region: 0
Created region: 1
Created region: 2
Created region: 0
To address this refactor _stats_create_segments() (previously only
used when creating one-region-per-target for --segments) into a
more general _do_stats_create_regions() that can create regions
for each segment, or a single region spanning either the entire
device or a specied start/len range.
This allows us to output all region creation messages from a
single point where both the device name and all information needed
to derive the number of areas is available.
This allows us to log all these facts in the resulting messages:
vg_hex-lv_home: Created new region with 13 area(s) as region ID 0
vg_hex-lv_home: Created new region with 4 area(s) as region ID 1
vg_hex-lv_home: Created new region with 1 area(s) as region ID 2
vg_hex-lv_swap: Created new region with 1 area(s) as region ID 0
vg_hex-lv_root: Created new region with 10 area(s) as region ID 0
luks-79733921-3f68-4c92-9eb7-d0aca4c6ba3e: Created new region with 17 area(s) as region ID 0
vg_hex-lv_images: Created new region with 20 area(s) as region ID 0
vg_hex-lv_images: Created new region with 4 area(s) as region ID 1
Don't use cryptic abbreviations and make sure that all values can
be understood by someone not familiar with the clock internals.
Include the current interval number (inverse of the _count) in all
interval update messages and attempt to align interval timestamp
logs for interval counts < 99,999.
If _stats_report fails (e.g. due to an invalid device on the
command line) destroy the _report to prevent stats columns headings
from being displayed.
This also requires a change in main to test the return from
_perform_command_for_all_repeatable_args inside the interval loop
and exit immediately in case of error.
The _update_interval_times() function is called once per reported
object: when shutting down at the end of a run only the first call
should free timestamps. Clear the timestamp pointers after free
and use this to signal to other callers that the clock is already
shut down.
If the Linux timerfd interface to POSIX timers is available at compile
time use it for all report interval timekeeping. This gives more
accurate interval timing when the per-interval processing time is less
than the configured interval and simplifies the timestamp bookkeeping
required to keep accurate time.
For systems without timerfd support fall back to the simple usleep based
timer.
Change logic and naming of some internal API functions.
cache_set_mode() and cache_set_policy() both take segment.
cache mode is now correctly 'masked-in'.
If the passed segment is 'cache' segment - it will automatically
try to find 'defaults' according to profiles if the are NOT
specified on command line or they are NOT already set for cache-pool.
These defaults are never set for cache-pool.
Add new profilable configurables:
allocation/cache_policy
allocation/cache_settings
and mark allocation/cache_pool_chunk_size as profilable as well.
Obsolete allocation/cache_pool_cachemode and
introduce new allocation/cache_mode instead.
Rename DEFAULT_CACHE_POOL_POLICY to DEFAULT_CACHE_POLICY.
Request a transient LV lock from lvmlockd when
converting an LV. If the LV is inactive when
lvconvert is run, the LV lock will be acquired
and then released when the command is done.
If the LV is active, a persistent lock exists
already and the transient lock request does nothing.
This fixes the issue that had been mentioned in the
comment previously.
The error path of _stats_list frees the task and stats objects:
don't try to branch to it before they have been allocated.
tools/dmsetup.c: 4589 in _stats_help() - Null pointer dereferences (FORWARD_NULL)
There's no point testing _report here in _stats_report: it's always
initialised before the function is called and if the check did fail
we'd end up freeing an uninitialized dm_task in the error path.
tools/dmsetup.c: 4389 in _stats_report() - Declaring variable "dmt" without initializer.
Add the libdm-stats module to libdm: this implements a simple interface
for creating, managing and interrogating I/O statistics regions and
areas on device-mapper devices.
The library interface is documented in libdevmapper.h and provides a
'dm_stats' handle that is used to perform statistics operations and
obtain data.
Public methods are provided to create and destroy handles and to list,
create, and destroy statistics regions as well as to obtain and parse
counter data and calculate rate-based metrics.
This commit also adds a 'dmsetup stats' (aka 'dmstats') command with
'clear', 'create', 'delete', 'list', 'print', and 'report' sub-commands.
See the library documentation and the dmstats.8 manual page for detailed
API and command descriptions.
Don't do interval management and external timekeeping for stats in
dm_report: let applications handle this on their own.
Since this has not been included in a release remove it from the
library entirely and handle report timing directly inside dmsetup.
Add a function to print column headings regardless of whether they
have already been output. This will be used by dmstats to issue
periodic reminders of the column headings.
This patch removes a check for RH_HEADINGS_PRINTED from
_report_headings that prevents headings being displayed if the flag
is already set; this check is redundant since the only existing
caller (_output_as_columns()) already tests the flag before
calling the function.
tools/polldaemon.c:465: uninit_use_in_call: Using uninitialized value "id.vg_name" when calling "print_log".
tools/polldaemon.c:465: uninit_use_in_call: Using uninitialized value "id.lv_name" when calling "print_log".
No commands set has_subcommands yet.
Move multiple device loop to separate function because we'll
soon want to call it repeatedly.
(Based on patch from bmr.)
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
Make it possible to decide whether we want to initialize connections and
filters together with toolcontext creation.
Add "filters" and "connections" fields to struct
cmd_context_initialized_parts and set these in cmd_context.initialized
instance accordingly.
(For now, all create_toolcontext calls do initialize connections and
filters, we'll change that in subsequent patch appropriately.)
Add struct cmd_context_initialized_parts to wrap up information
about which cmd context pieces are initialized and add variable
of this struct type into struct cmd_context.
Also, move existing "config_initialized" variable that was directly
part of cmd_context into the new cmd_context.initialized wrapper.
We'll be adding more items into the struct cmd_context_initialized_parts
with subsequent patches...
Stop removing hyphens when = is seen. With an option
like --profile=thin-performance, the hyphen removal
will stop at = and will not remove - after thin.
Stop removing hyphens altogether when a stand alone arg
of -- appears.
. the poll check will eventually call finish which will
write the VG, so an ex VG lock is needed from lvmlockd.
. fix missing unlock on poll error path
. remove the lockd locking while monitoring the progress
of the command, as suggested by the earlier FIXME comment,
as it's not needed.
Recent change to move the polling outside of core lvconvert
code was wrongly using 'lv' and 'vg' structs which can't be
used outside of the core code, which caused seg fault.
Properly isolate all use of lv structs within the core of
the lvconvert code, saving any information necessary,
(esp lvid). After the core of lvconvert is done, use
the saved information to do polling.
FIXME: the need for is_merging_origin and is_merging_origin_thin
in this patch is ugly, and a cleaner way should be found to deal
with that than what is done here.
Also it effectively removed all hacks in _lvconvert_merge_single
performing ugly: VG reread, unlock, polling, lock sequence.
Moreover all polling operations are postponed after all conversions
are finished.
lvm2 (while locking via lvmlockd) should now be able to run with
or without lvmpolld while performing poll operations originating
in lvconvert command.
Signed-off-by: Ondrej Kozina <okozina@redhat.com>
The vgchange/lvchange activation commands read the VG, and
don't write it, so they acquire a shared VG lock from lvmlockd.
When other commands fail to acquire a shared VG lock from
lvmlockd, a warning is printed and they continue without it.
(Without it, the VG metadata they display from lvmetad may
not be up to date.)
vgchange/lvchange -a shouldn't continue without the shared
lock for a couple reasons:
. Usually they will just continue on and fail to acquire the
LV locks for activation, so continuing is pointless.
. More importantly, without the sh VG lock, the VG metadata
used by the command may be stale, and the LV locks shown
in the VG metadata may no longer be current. In the
case of sanlock, this would result in odd, unpredictable
errors when lvmlockd doesn't find the expected lock on
disk. In the case of dlm, the invalid LV lock could be
granted for the non-existing LV.
The solution is to not continue after the shared lock fails,
in the same way that a command fails if an exclusive lock fails.
When lvm is built without lvmlockd support, vgcreate using a
shared lock type would succeed and create a local VG (the
--shared option was effectively ignored). Make it fail.
Fix the same issue when using vgchange to change a VG to a
shared lock type.
Make the error messages consistent.
Keep policy name separate from policy settings and avoid
to mangling and demangling this string from same config tree.
Ensure policy_name is always defined.
Both lock_start filters were being skipped when any lock-opt
values were used. The "auto" lock-opt should cause the
auto_lock_start_list to be used. The lock_start_list should
always be used.
The behavior of lock_start_list/auto_lock_start_list are tested
and verified to behave like volume_list/auto_activation_volume_list.
Since the default was changed to wait for lock-start to finish,
the "wait" and "autowait" lock-opt values are not needed, but a
new "autonowait" is added to the existing "nowait" avoid the
default waiting.
There are two different failure conditions detected in
access_vg_lock_type() that should have different error
messages. This adds another failure flag so the two
cases can be distinguished to avoid printing a misleading
error message.
Require global/{thin,cache}_{check,repair}_options to be always defined.
If not defined directly by user in the configuration and if there's no
concrete default option to use, make "" (empty string) the default one -
it's then clearly visible in the "lvmconfig --type default" (and
generated lvm.conf) and also it makes its handling in the code more
straightforward so we don't need to handle undefined values.
This means, if there are no default values for these settings defined,
we end up with this generated now:
{thin,cache}_{check,repair}_options = [ "" ]
So the value is never undefined and if it is, it's an error.
(The cache_repair_options is actually not used in the code at the moment,
but once the code using this setting is in, it will follow the same logic
as used for thin_repair_options.)
The "exported" state of the VG can be useful with lockd VGs
because the exported state keeps a VG from being used in general.
It's a way to keep a VG protected and out of the way.
Also fix the command flags: ALL_VGS_IS_DEFAULT is not true for
vgimport/vgexport, since they both return errors immediately if
no VG args are specified. LOCKD_VG_SH is not true for vgexport
beause it must use an ex lock to write the VG.
When --nolocking is used (by vgs, lvs, pvs):
. don't use lvmlockd at all (set use_lvmlockd to 0)
. allow lockd VGs to be read
When --readonly is used (by vgs, lvs, pvs, vgdisplay, lvdisplay,
pvdisplay, lvmdiskscan, lvscan, pvscan, vgcfgbackup):
. skip actual lvmlockd locking calls
. allow lockd VGs to be read
. check that only shared gl/vg locks are being requested
(even though the actually locking is being skipped)
. check that no LV locks are requested, because no LVs
should be activated or used in readonly mode
. disable using lvmetad so VGs are read from disk
It is important to note the limited commands that accept
the --nolocking and --readonly options, i.e. no commands
that change/write a VG or change/activate LVs accept these
options, only commands that read VGs.
A new lockd lock needs to be created for the new LV
created by split mirror and split snapshot. Disallow
these options in lockd VGs until that is implemented.
This prevents 'lvremove vgname' from attempting to remove the
hidden sanlock LV. Only vgremove should remove the hidden
sanlock LV holding the sanlock locks.
tools/polldaemon.c:457: array_null: Comparing an array to null is not useful: "lv->lvid.s"
The lv->lvid.s is never NULL. The check was supposed to be *lv->lvid.s
to check if the string is not empty.
... Using uninitialized value "lockd_state" when calling "lockd_vg"
(even though lockd_vg assigns 0 to the lockd_state, but it looks at
previous state of lockd_state just before that so we need to have
that properly initialized!)
libdm/libdm-report.c:2934: uninit_use_in_call: Using uninitialized value "tm". Field "tm.tm_gmtoff" is uninitialized when calling "_get_final_time".
daemons/lvmlockd/lvmlockctl.c:273: uninit_use_in_call: Using uninitialized element of array "r_name" when calling "format_info_r_action". (just added FIXME as this looks unfinished?)
The lvmconfig --type full is actually a combination of --type current
and --type missing together with --mergedconfig options used.
The overall outcome is a configuration tree with settings as LVM sees
it when it looks for the values - that means, if the setting is defined
in some config source (lvm.conf, --config, lvmlocal.conf or any profile
that is used), the setting is used. Otherwise, if the setting is not
defined in any part of the config cascade, the defaults are used.
The --type full displays exactly this final tree with all the values
defined, either coming from configuration tree or from defaults.
We shouldn't be adding spaces by default in output as that
may be be used already in scripts and especially for the eval
in shell scripts where spaces are not allowed between key
and value!
Add --withspaces option to lvmconfig for pretty output with
more space in for readability.
Just as 'e' means activation with an exclusive lock,
add an 's' to mean activation with a shared lock.
This allows the existing but implicit behavior of '-ay'
of clvm LVs to be specified explicitly. For local VGs,
asy simply means ay, just like aey means ay.
For local VGs, ay == aey == asy
For clvm VGs, ay == asy, aey == aey, asy == asy
The hyphens are removed from long option names before
being read. This means that:
- Option name specifications in args.h must not include hyphens.
(The hyphen in 'use-policies' is removed.)
- A user can include hyphens anywhere in the option name.
All the following are equivalent:
--vgmetadatacopies,
--vg-metadata-copies,
--v-g-m-e-t-a-d-a-t-a-c-o-p-i-e-s-
Commit b00711e312 improperly
convert _area_missing() replacment and moved check for
AREA_PV seg_type() into same if() section.
Signed-off-by: Lidong Zhong <lzhong@suse.com>
There's a race when asking lvmpolld about progress_status and
actually reading the progress info from kernel:
Even with lvmpolld being used we read status info from
LVM2 command issued by a user (client side from lvmpolld perspective).
The whole cycle may look like following:
1) set up an operation that requires polling (i.e. pvmove /dev/sda)
2) notify lvmpolld about such operation (lvmpolld_poll_init())
3) in case 1) was not called with --background it would continue with:
4) Ask lvmpolld about progress status. it may respond with one of:
a) in_progress
b) not_found
c) finished
d) any low level error
5) provided the answer was 4a) try to read progress info from polling LV
(i.e. vg00/pvmove1). Repeat steps 4) and 5) until the answer is != 4a).
And now we got into racy configuration: lvmpolld answered with in_progress
but it may be the that in_between 4) and 5) the operation has already
finished and polling LV is already gone or there's nothing to ask for.
Up to now, 5) would report warning and it could print such warning many
times if --interval was set to 0.
We don't want to scary users by warnings in such situation so let's just
print these messages in verbose mode. Error messages due to error while
reading kernel status info (on existing, active and locked LV) remained
the same.
currently in wait_for_single_lv() fn trying to poll missing pvmove LV
is considered success. It may have been already finished by another
instance of polldaemon. either by another forked off polldaemon
or by lvmpolld.
Let's try to handle the mirror conversion and snapshot merge the same
way.
These wrappers have been replaced by direct calls
to vg_read() and find_lv() in previous commits.
This commit should have no functional impact since
all bits were already unreachable.
let's call dev_close_all() only before we're about to 'sleep'
for at least one second during the polling.
(it's questionable whether to call dev_close_all() at all in
polldaemon code. Natural extension would be to drop it completely)
More exact clean of library exported symbols files.
Also use $(firstword) test to check for empty string
so 'make clean' has now cleaner condensed look.
Clean also created include links.
we don't want to fail properly set pvmove after metadata
update. failure to copy id components could end with dangling
mirror moving PV segments but no monitoring from lvmpolld or
classical polldaemon.
lvpoll now process passed LV name properly. It respects
LVM_VG_NAME env. variable and is able to process LV name
passed in various formats:
- VG/LV
- LV name only (with LVM_VG_NAME set)
- /dev/mapper/VG-LV
- /dev/VG/LV
In process_each_{vg,lv,pv} when no vgname args are given,
the first step is to get a list of all vgid/vgname on the
system. This is exactly what lvmetad returns from a
vg_list request. The current code is doing a vg_lookup
on each VG after the vg_list and populating lvmcache with
the info for each VG. These preliminary vg_lookup's are
unnecessary, because they will be done again when the
processing functions call vg_read. This patch eliminates
the initial round of vg_lookup's, which can roughly cut in
half the number of lvmetad requests and save a lot of extra work.
querying future lvmpolld with zero wait time is highly undesirable
and can cause serious performance drop of the future daemon. The new
wrapper function may avoid immediate return from syscal by
introducing minimal wait time on demand.
Routines responsible for polling of in-progress pvmove, snapshot merge
or mirror conversion each used custom lookup functions to find vg and
lv involved in polling.
Especially pvmove used pvname to lookup pvmove in-progress. The future
lvmpolld will poll each operation by vg/lv name (internally by lvid).
Also there're plans to make pvmove able to move non-overlaping ranges
of extents instead of single PVs as of now. This would also require
to identify the opertion in different manner.
The poll_operation_id structure together with daemon_parms structure they
identify unambiguously the polling task.
Waiting even after _check_lv_status returned success and
'finished' flag was set to true doesn't make much sense.
Note that while we skip the wait() we also skip the
init_full_scan_done(0) inside the routine. This should
have no impact as long as the code after _wait_for_single_lv
doesn't presume anything about the state of the cache.
as a part of bigger effort to unify polling intefaces
poll_get_copy_lv should be able to look up LVs based
on theirs lv->status field.
Effective after pvmove starts using poll_get_copy_lv
fn as well.
This patch adds supporting code for handling deprecated settings.
Deprecated settings are not displayed by default in lvmconfig output
(except for --type current and --type diff). There's a new
"--showdeprecated" lvmconfig option to display them if needed.
Also, when using lvmconfig --withcomments, the comments with info
about deprecation are displayed for deprecated settings and with
lvmconfig --withversions, the version in which the setting was
deprecated is displayed in addition to the version of introduction.
If using --atversion with a version that is lower than the one
in which the setting was deprecated, the setting is then considered
as not deprecated (simply because at that version it was not
deprecated).
For example:
$ lvmconfig --type default activation
activation {
...
raid_region_size=512
...
}
$ lvmconfig --type default activation --showdeprecated
activation {
...
mirror_region_size=512
raid_region_size=512
...
}
$ lvmconfig --type default activation --showdeprecated --withversions
activation {
...
# Available since version 1.0.0.
# Deprecated since version 2.2.99.
mirror_region_size=512
# Available since version 2.2.99.
raid_region_size=512
...
}
$ lvmconfig --type default activation --showdeprecated --withcomments
activation {
...
# Configuration option activation/mirror_region_size.
# This has been replaced by the activation/raid_region_size
# setting.
# Size (in KB) of each copy operation when mirroring.
# This configuration option is deprecated.
mirror_region_size=512
# Configuration option activation/raid_region_size.
# Size in KiB of each raid or mirror synchronization region.
# For raid or mirror segment types, this is the amount of
# data that is copied at once when initializing, or moved
# at once by pvmove.
raid_region_size=512
...
}
$ lvmconfig --type default activation --withcomments --atversion 2.2.98
activation {
...
# Configuration option activation/mirror_region_size.
# Size (in KB) of each copy operation when mirroring.
mirror_region_size=512
...
}
These settings are in the "unsupported" group:
devices/loopfiles
log/activate_file
metadata/disk_areas (section)
metadata/disk_areas/<disk_area> (section)
metadata/disk_areas/<disk_area>/size
metadata/disk_areas/<disk_area>/id
These settings are in the "advanced" group:
devices/dir
devices/scan
devices/types
global/proc
activation/missing_stripe_filler
activation/mlock_filter
metadata/pvmetadatacopies
metadata/pvmetadataignore
metadata/stripesize
metadata/dirs
Also, this patch causes the --ignoreunsupported and --ignoreadvanced
switches to be honoured for all config types (lvmconfig --type).
By default, the --type current and --type diff display unsupported
settings, the other types ignore them - this patch also introduces
--showunsupported switch for all these other types to display even
unsupported settings in their output if needed.
lvmconfig --type list displays plain list of configuration settings.
Some of the existing decorations can be used (--withsummary and
--withversions) as well as existing options/switches (--ignoreadvanced,
--ignoreunsupported, --ignorelocal, --atversion).
For example (displaying only "config" section so the list is not long):
$lvmconfig --type list config
config/checks
config/abort_on_errors
config/profile_dir
$ lvmconfig --type list --withsummary config
config/checks - If enabled, any LVM configuration mismatch is reported.
config/abort_on_errors - Abort the LVM process if a configuration mismatch is found.
config/profile_dir - Directory where LVM looks for configuration profiles.
$ lvmconfig -l config
config/checks - If enabled, any LVM configuration mismatch is reported.
config/abort_on_errors - Abort the LVM process if a configuration mismatch is found.
config/profile_dir - Directory where LVM looks for configuration profiles.
$ lvmconfig --type list --withsummary --withversions config
config/checks - If enabled, any LVM configuration mismatch is reported. [2.2.99]
config/abort_on_errors - Abort the LVM process if a configuration mismatch is found. [2.2.99]
config/profile_dir - Directory where LVM looks for configuration profiles. [2.2.99]
Example with --atversion (displaying global section):
$ lvmconfig --type list global
global/umask
global/test
global/units
global/si_unit_consistency
global/suffix
global/activation
global/fallback_to_lvm1
global/format
global/format_libraries
global/segment_libraries
global/proc
global/etc
global/locking_type
global/wait_for_locks
global/fallback_to_clustered_locking
global/fallback_to_local_locking
global/locking_dir
global/prioritise_write_locks
global/library_dir
global/locking_library
global/abort_on_internal_errors
global/detect_internal_vg_cache_corruption
global/metadata_read_only
global/mirror_segtype_default
global/raid10_segtype_default
global/sparse_segtype_default
global/lvdisplay_shows_full_device_path
global/use_lvmetad
global/thin_check_executable
global/thin_dump_executable
global/thin_repair_executable
global/thin_check_options
global/thin_repair_options
global/thin_disabled_features
global/cache_check_executable
global/cache_dump_executable
global/cache_repair_executable
global/cache_check_options
global/cache_repair_options
global/system_id_source
global/system_id_file
$ lvmconfig --type list global --atversion 2.2.50
global/umask
global/test
global/units
global/suffix
global/activation
global/fallback_to_lvm1
global/format
global/format_libraries
global/segment_libraries
global/proc
global/locking_type
global/wait_for_locks
global/fallback_to_clustered_locking
global/fallback_to_local_locking
global/locking_dir
global/library_dir
global/locking_library
'lvm dumpconfig' now does a lot more than just dumping configuration
information and is no longer only a support tool. Users now need
to run it to find out about configuration information that has been
removed from the lvm.conf man page so we need to promote this to full
command line status as 'lvmconfig'. Also accept 'lvm config' and mention
it in the usage information of lvmconf (which should also get merged in
eventually).
With use_lvmetad=0, duplicate PVs /dev/loop0 and /dev/loop1,
where in this example, /dev/loop1 is the cached device
referenced by pv->dev, the command 'pvs /dev/loop0' reports:
Failed to find physical volume "/dev/loop0".
This is because the duplicate PV detection by pvid is
not working because _get_all_devices() is not setting
any dev->pvid for any entries. This is because the
pvid information has not yet been saved in lvmcache.
This is fixed by calling _get_vgnameids_on_system()
before _get_all_devices(), which has the effect of
caching the necessary pvid information.
With this fix, running pvs /dev/loop0, or pvs /dev/loop1,
produces no error and one line of output for the PV (the
device printed is the one cached in pv->dev, in this
example /dev/loop1.)
Running 'pvs /dev/loop0 /dev/loop1' produces no error
and two lines of output, with each device displayed
on one of the lines.
Running 'pvs -a' shows two PVs, one with loop0 and one
with loop1, and both shown as a member of the same VG.
Running 'pvs' shows only one of the duplicate PVs,
and that shows the device cached in pv->dev (loop1).
The above output is what the duplicate handling code
was previously designed to output in commits:
b64da4d8b5 toollib: search for duplicate PVs only when needed
3a7c47af0e toollib: pvs -a should display VG name for each duplicate PV
57d74a45a0 toollib: override the PV device with duplicates
c1f246fedf toollib: handle duplicate pvs in process_in_pv
As a further step after this, we may choose to change
some of those.
For all of these commands, a warning is printed about
the existence of the duplicate PVs:
Found duplicate PV ...: using /dev/loop1 not /dev/loop0
Add support for 2 new envvars for internal lvm2 test suite
(though it could be possible usable for other cases)
LVM_LOG_FILE_EPOCH
Whether to add 'epoch' extension that consist from
the envvar 'string' + pid + starttime in kernel units
obtained from /proc/self/stat.
LVM_LOG_FILE_UNLINK_STATUS
Whether to unlink the log depending on return status value,
so if the command is successful the log is automatically
deleted.
API is still for now experimental to catch various issue.
--withfullcomments prints all comment lines for each config option.
--withcomments prints only the first comment line, which should be
a short one-line summary of the option.
sharing connection between parent command and background
processes spawned from parent could lead to occasional failures
due to unexpected corruption in daemon responses sent to either child
or a parent.
lvmetad issued warning about duplicate config values in request.
LVM commands occasionaly failed w/ internal error after receving
corrupted response.
lvmetad connection is renewed when needed after explicit disconnect
in child
spawning a background polling from within the lv_change_activate
fn went to two problems:
1) vgchange should not spawn any background polling until after
the whole activation process for a VG is finished. Otherwise
it could lead to a duplicite request for spawning background
polling. This statement was alredy true with one exception of
mirror up-conversion polling (fixed by this commit).
2) due to current conditions in lv_change_activate lvchange cmd
couldn't start background polling for pvmove LVs if such LV was
about to get activated by the command in the same time.
This commit however doesn't alter the lvchange cmd so that it works same as
vgchange with regard to not to spawn duplicate background pollings per
unique LV.
If the user provides '-m #' (# > 0) with mappings
raid4/5/6, the command silently creates
'#mirrors * #stripes + #parity' image component pairs.
Patch rejects '-m #' altogether for those mappings
in order to avoid LV creation with unexpected layout.
- resolves bz#1209445
If the device name is not found in our metadata,
we cannot call strdup few lines later with NULL name.
More intersting story goes behind how it happens -
pvmove removal is unfortunatelly 'multi-state' process
and at some point (for now) we have in lvm2 metadata
LV pvmove0 as stripe and mirror image as error.
If such metadata are left - we fail with any further removal.
we do not allow 0 interval for pvmove command issued
without parameters with classical polldaemon. It would
query the kernel too often with possibly many pvmoves
in-progress.
So far pvmove_update_metadata (originaly _update_metadata) was
used for both initial and subsequent metadata updates during polling.
With a new polldaemon (lvmpolld) all operations that require polling
have to be split in two parts: The initiating one and the polling one.
The later step will be used from lvm command spawned by lvmpolld to
monitor and advance the mirror on next segment if required.
1) The initiation part is _update_metadata in pvmove.c which performs
only the first update, setting up the pvmove itself in metadata.
2) pvmove_update_metadata in pvmove_poll.c now handles all other
subsequent metadata updates except the last one.
Due to the split we could remove some code. Also some functions were
moved back to pvmove.c as they were suited for initialisation of pvmove
only.
This commit has no impact on functionality. Code required to
be visible outside lvconvert.c is just moved into new file
lvconvert_poll.c and some calls are made non-static and
declared in new header file lvconvert.h
This commit has no impact on functionality. Code required to
be visible outside pvmove.c is just moved into new file
pvmove_poll.c and some calls are made non-static and declared in
new header file pvmove.h
_check_lv_status was called from within dm_list_iterate_items cycle.
This was utterly wrong! _check_lv_status may remove more than one LV from
vg->lvs list we iterated in the same time.
In some scenarios this could lead to deadlock iterationg over same LV
indefinitely or segfault depending on the circumstances.
Fixed by moving the _check_lv_status outside iterating the vg->lvs
list.
Note that commit 6e7b24d34f was not enough
as _check_lv_status may result in removal of more than one LV from the list.
Do not keep dangling LVs if they're removed from the vg->lvs list and
move them to vg->removed_lvs instead (this is actually similar to already
existing vg->removed_pvs list, just it's for LVs now).
Once we have this vg->removed_lvs list indexed so it's possible to
do lookups for LVs quickly, we can remove the LV_REMOVED flag as
that one won't be needed anymore - instead of checking the flag,
we can directly check the vg->removed_lvs list if the LV is present
there or not and to say if the LV is removed or not then. For now,
we don't have this index, but it may be implemented in the future.
This avoids a problem in which we're using selection on LV list - we
need to do the selection on initial state and not on any intermediary
state as we process LVs one by one - some of the relations among LVs
can be gone during this processing.
For example, processing one LV can cause the other LVs to lose the
relation to this LV and hence they're not selectable anymore with
the original selection criteria as it would be if we did selection
on inital state. A perfect example is with thin snapshots:
$ lvs -o lv_name,origin,layout,role vg
LV Origin Layout Role
lvol1 thin,sparse public,origin,thinorigin,multithinorigin
lvol2 lvol1 thin,sparse public,snapshot,thinsnapshot
lvol3 lvol1 thin,sparse public,snapshot,thinsnapshot
pool thin,pool private
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
The lvremove command above was supposed to remove lvol1 as well as
all its snapshots which have origin=lvol1. It failed to do so, because
once we removed the origin lvol1, the lvol2 and lvol3 which were
snapshots before are not snapshots anymore - the relations change
as we're processing these LVs one by one.
If we do the selection first and then execute any concrete actions on
these LVs (which is what this patch does), the behaviour is correct
then - the selection is done on the *initial state*:
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
Logical volume "lvol2" successfully removed
Logical volume "lvol3" successfully removed
Similarly for all the other situations in which relations among
LVs are being changed by processing the LVs one by one.
This patch also introduces LV_REMOVED internal LV status flag
to mark removed LVs so they're not processed further when we
iterate over collected list of LVs to be processed.
Previously, when we iterated directly over vg->lvs list to
process the LVs, we relied on the fact that once the LV is removed,
it is also removed from the vg->lvs list we're iterating over.
But that was incorrect as we shouldn't remove LVs from the list
during one iteration while we're iterating over that exact list
(dm_list_iterate_items safe can handle only one removal at
one iteration anyway, so it can't be used here).
When we're iterating over LVs in _poll_vg fn, we need to use the safe
version of iteration - the LV can be removed from the list which we're
just iterating over if we're finishing or aborting pvmove operation.
There is no reason to support persistent major/minor numbers
for pool volumes - it's only meant to be supported for filesystems
(since i.e. nfs may need to keep volume on a persistent device node.)
Support for pools is now explicitely disabled and documented.
When lvm1 PVs are visible, and lvmetad is used, and the foreign
option was included in the reporting command, the reporting
command would fail after the 'pvscan all devs' function saw
the lvm1 PVs. There is no reason the command should fail
because of the lvm1 PVs; they should just be ignored.
Though vgremove operates per VG by definition, internally, it
actually means iterating over each LV it contains to do the
remove.
So we need to direct selection a bit in this case so that the
selection is done per-VG, not per-LV.
That means, use processing handle with void_handle.internal_report_for_select=0
for the process_each_lv_in_vg that is called later in vgremove_single fn.
We need to disable internal selection for process_each_lv_in_vg
here as selection is already done by process_each_vg which calls
vgremove_single. Otherwise selection would be done per-LV and not
per-VG as we intend!
An intra-release fix for commit 00744b053f.
Set ACCESS_NEEDS_SYSTEM_ID VG status flag whenever there is
a non-lvm1 system_id set. Prevents concurrent access from
older LVM2 versions.
Not set on VGs that bear a system_id only due to conversion
from lvm1 metadata.
In log messages refer to it as system ID (not System ID).
Do not put quotes around the system_id string when printing.
On the command line use systemid.
In code, metadata, and config files use system_id.
In lvmsystemid refer to the concept/entity as system_id.
"!dev_cache_get(argv[i], cmd->full_filter) && !rescan_done" --> "!rescan_done && !dev_cache_get(argv[i], cmd->full_filter)
Check the simple condition first (variable), then the function return value
(which in this case certainly takes more time to evaluate) - save some time.
Two problems fixed by this patch:
- PV tags were not recognized at all when using them with pvs
report that has only label fields (regression since 2.02.105)
- incorrect persistent .cache file to be generated after pvs
report that has only label fields (regression since 2.02.106)
These bugs come from the transition from process_each_pv to
process_each_label introduced by commit
67a7b7a87d and commit
490226fc47 and related.
Commands that can never use foreign VGs begin with
cmd->error_foreign_vgs = 1. This tells the vg_read
lib layer to print an error as soon as a foreign VG
is read.
The toollib process_each layer also prints an error if a
foreign VG is read, but is more selective about it. It
won't print an error if the command did not explicitly
name the foreign VG. We want to silently ignore foreign VGs
unless a command attempts to use one explicitly.
So, foreign VG errors are printed from two different layers:
vg_read (lower layer) and process_each (upper layer).
Commands that use toollib process_each, only want errors from
the process_each layer, not from both layers. So, process_each
disables the lower layer vg_read error message by setting
error_foreign_vgs = 0.
Commands that do not use toollib process_each, want errors
from the vg_read layer, otherwise they would get no error
message. The original cmd->error_foreign_vgs setting
enables this error.
(Commands that are allowed to operate on foreign VGs always
begin with cmd->error_foreign_vgs = 0, and all the commands
in this group use toollib process_each with the selective
error reporting.)
If an LV is already rw but still ro in the kernel, allow -prw to issue a
refresh to try to change the kernel state to rw.
Intended for use after clearing activation/read_only_volume_list in
lvm.conf.
The only realistic way for a host to have active LVs in a
foreign VG is if the host's system_id (or system_id_source)
is changed while LVs are active.
In this case, the active LVs produce an warning, and access
to the VG is implicitly allowed (without requiring --foreign.)
This allows the active LVs to be deactivated.
In this case, rescanning PVs for the VG offers no benefit.
It is not possible that rescanning would reveal an LV that
is active but wasn't previously in the VG metadata.
cmirror uses the CPG library to pass messages around the cluster and maintain
its bitmaps. When a cluster mirror starts-up, it must send the current state
to any joining members - a checkpoint. When mirrors are large (or the region
size is small), the bitmap size can exceed the message limit of the CPG
library. When this happens, the CPG library returns CPG_ERR_TRY_AGAIN.
(This is also a bug in CPG, since the message will never be successfully sent.)
There is an outstanding bug (bug 682771) that is meant to lift this message
length restriction in CPG, but for now we work around the issue by increasing
the mirror region size. This limits the size of the bitmap and avoids any
issues we would otherwise have around checkpointing.
Since this issue only affects cluster mirrors, the region size adjustments
are only made on cluster mirrors. This patch handles cluster mirror issues
involving pvmove, lvconvert (from linear to mirror), and lvcreate. It also
ensures that when users convert a VG from single-machine to clustered, any
mirrors with too many regions (i.e. a bitmap that would be too large to
properly checkpoint) are trapped.
A foreign VG should be silently ignored by a reporting/display
command like 'vgs'. If the reporting/display command specifies
a foreign VG by name on the command line, it should produce an
error message.
Scanning commands pvscan/vgscan/lvscan are always allowed to
read and update caches from all PVs, including those that belong
to foreign VGs.
Other non-report/display/scan commands always ignore a foreign
VG, or report an error if they attempt to use a foreign VG.
vgimport should always invalidate the lvmetad cache because
lvmetad likely holds a pre-vgexported copy of the VG.
(This is unrelated to using foreign VGs; the pre-vgexported
VG may have had no system_id at all.)
Add --foreign to the remaining reporting and display commands plus
vgcfgbackup.
Add a NEEDS_FOREIGN_VGS flag for vgimport to always set --foreign.
If lvmetad is being used with --foreign, scan foreign VGs (currently
implemented as a full PV scan).
Handle these things centrally in lvmcmdline.c.
Also allow lvchange and vgchange -an/-aln to deactivate any foreign
LVs that happen to be active if something went wrong.
Remember to set the system ID when creating a new VG in vgsplit.
When checking whether the system ID permits access to a VG, check for
each permitted situation first, and only then issue the appropriate
error message. Always issue a message for now. (We'll try to
suppress some of those later when the VG concerned wasn't explicitly
requested.)
Add more messages to try to ensure every return code is checked and
every error path (and only an error path) contains a log_error().
Add self-correction to vgchange -c to deal with situations where
the cluster state and system ID state are out-of-sync (e.g. if
old tools were used).
Dop unused value assignments.
Unknown is detected via other combination
(!linear && !striped).
Also change the log_error() message into a warning,
since the function is not really returning error,
but still keep the INTERNAL_ERROR.
Ret value is always set later.
(This reverts patch #d95c6154)
Filter complete device list through full_filter unconditionally when
we're getting the list of *all* devices even in case we're interested
only in fraction of those devices - the PVs, not the other devices
which are not PVs yet (e.g. pvs vs. pvs -a).
We need to do this full filtering whenever we're handling *complete*
list of devices, we need to be safe here, mainly if there are any
future changes and we'd forgot to change to use proper filtering then.
Also properly preventing duplicates if there are any block subsystem
components used (mpath, MD ...).
Thing here is that (under use_lvmetad=1), cmd->filter can be used
only if we're sure that the list of devices we're filtering contains
only PVs. We have to use cmd->full_filter otherwise (like it is in
case of _get_all_devices fn which acquires complete list of devices,
no matter if it is a PV or not).
Of course, cmd->full_filter is more extensive than cmd->filter
which is only a subset of full_filter.
We could optimize this in a way that if we're interested in PVs only
during process_each_pv processing (e.g. using pvs in contrast to pvs -a),
we'd get the list of PV devices directly from lvmetad from the
lvmcache_seed_infos_from_lvmetad fn call which currently updates
lvmcache only. We'd add an additional output arg for this fn to get
the list of PV devices directly in addition, without a need to iterate
over all devices which include non-PVs which we're not interested in
anyway, hence we could use only cmd->filter, not the cmd->full_filter.
So the code would look something like this:
static int _get_all_devices(....)
{
struct device_id_list *dil;
if (interested_in_pvs_only)
lvmcache_seed_infos_from_lvmetad(cmd, &dil); /* new "dil" arg */
/* the "dil" list would be filtered through cmd->filter inside lvmcache_seed_infos_from_lvmetad */
else {
lvmcache_seed_infos_from_lvmetad(cmd, NULL);
dev_iter_create(cmd->full_filter)
while (dev = dev_iter_get ...) {
dm_list_add(all_devices, &dil->list);
}
}
}
It's cleaner this way - do not mix static and dynamic
(init_processing_handle) initializers. Use the dynamic one everywhere.
This makes it easier to manage the code - there are no "exceptions"
then and we don't need to take care about two ways of initializing the
same thing - just use one common initializer throughout and it's clear.
Also, add more comments, mainly in the report_for_selection fn explaining
what is being done and why with respect to the processing_handle and
selection_handle.
Invalid devices no longer included in the counters printed at the end.
May now need to use --ignoreskippedcluster if relying upon exit status.
If more than one change is requested per-PV, attempt to perform them
all. Note that different arguments still handle exit status
differently.
We still need to get the list as the calls underneath process_each_pv
rely on this list. But still keep the change related to the filters -
if we're processing all devices, we need to use cmd->full_filter.
If we're processing only PVs, we can use cmd->filter only to save
some time which would be spent in filtering code.
When lvmetad is used and at the same time we're getting list of all
PV-capable devices, we can't use cmd->filter (which is used to filter
out lvmetad responses - so we're sure that the devices are PVs already).
To get the list of PV-capable devices, we're bypassing lvmetad (since
lvmetad only caches PVs, not all the other devices which are not PVs).
For this reason, we have to use the "full_filter" filter chain (just
like we do when we're running without lvmetad).
Example scenario:
- sdo and sdp components of MD device md0
- sdq, sdr and sds components of mpatha multipath device
- mpatha multipath device partitioned
- vda device partitioned
=> sdo,sdp,sdr,sds, mpatha and vda should be filtered!
$ lsblk -o NAME,TYPE
NAME TYPE
sdn disk
sdo disk
`-md0 raid0
sdp disk
`-md0 raid0
sdq disk
`-mpatha mpath
`-mpatha1 part
sdr disk
`-mpatha mpath
`-mpatha1 part
sds disk
`-mpatha mpath
`-mpatha1 part
vda disk
|-vda1 part
`-vda2 part
|-fedora-swap lvm
`-fedora-root lvm
Before this patch:
==================
use_lvmetad=0 (correct behaviour!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
use_lvmetad=1 (incorrect behaviour - sdo,sdp,sdq,sdr,sds and mpatha not filtered!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/sdo --- 0 0
/dev/sdp --- 0 0
/dev/sdq --- 0 0
/dev/sdr --- 0 0
/dev/sds --- 0 0
/dev/vda --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
With this patch applied:
========================
use_lvmetad=1
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
List of all devices is only needed if we want to process devices
which are not PVs (e.g. pvs -a). But if this is not the case, it's
useless to get the list of all devices and then discard it without
any use, which is exactly what happened in process_each_pv where
the code was never reached and the list was unused if we were
processing just PVs, not all PV-capable devices:
int process_each_pv(...)
{
...
process_all_devices = process_all_pvs &&
(cmd->command->flags & ENABLE_ALL_DEVS) &&
arg_count(cmd, all_ARG);
...
/*
* If the caller wants to process all devices (not just PVs), then all PVs
* from all VGs are processed first, removing them from all_devices. Then
* any devs remaining in all_devices are processed.
*/
_get_all_devices(cmd, &all_devices);
...
ret = _process_pvs_in_vgs(...);
...
if (!process_all_devices)
goto out;
ret = _process_device_list(cmd, &all_devices, handle, process_single_pv);
...
}
This patch adds missing check for "process_all_devices" and it gets the
list of all (including non-PV) devices only if needed:
This is a followup patch for previous patchset that enables selection in
process_each_* fns to fix an issue where field prefixes are not
automatically used for fields in selection criteria.
Use initial report type that matches the intention of each process_each_* functions:
- _process_pvs_in_vg - PVS
- process_each_vg - VGS
- process_each_lv and process_each_lv_in_vg - LVS
This is not normally needed for the selection handle init, BUT we would
miss the field prefix matching, e.g.
lvchange -ay -S 'name=lvol0'
The "name" above would not work if we didn't initialize reporting with
the LVS type at its start. If we pass proper init type, reporting code
can deduce the prefix automatically ("lv_name" in this case).
This report type is then changed further based on what selection criteria we
have. When doing pure selection, not report output, the final report type
is purely based on combination of this initial report type and report types
of the fields used in selection criteria.
We already allowed -S|--select with {vg,lv,pv}display -C (which
was then equal to {vg,lv,pv}s command. Since we support selection
in toolib now, we can support -S also without using -C in *display
commands now.
pvchange is an exception that does not use toollib yet for iterating
over the list of PVs (process_each_pv) so intialize the
processing_handle and use just like it's used in toollib.
We have 3 input report types:
- LVS (representing "_select_match_lv")
- VGS (representing "_select_match_vg")
- PVS (representing "_select_match_pv")
The input report type is saved in struct selection_handle's "orig_report_type"
variable.
However, users can use any combination of fields of different report types in
selection criteria - the resulting report type can thus differ. The struct
selection_handle's "report_type" variable stores this resulting report type.
The resulting report_type can end up as one of:
- LVS
- VGS
- PVS
- SEGS
- PVSEGS
This patch adds logic to report_for_selection based on (sensible) combination
of orig_report_type and report_type and calls appropriate reporting functions
or iterates over multiple items that need reporting to determine the selection
result.
The report_for_selection does the actual "reporting for selection only".
The selection status will be saved in struct selection_handle's "selected"
variable.
The code to determine final report type based on combination of input
report type (determined from fields used for reporting to output and selection)
can be reused for pure reporting for selection - factor out this code into
_get_final_report_type function.
This applies to:
- process_each_lv_in_vg - the VG is selected only if at least one of its LVs is selected
- process_each_segment_in_lv - the LV is selected only if at least one of its LV segments is selected
- process_each_pv_in_vg - the VG is selected only if at least one of its PVs is selected
- process_each_segment_in_pv - the PV is selected only if at least one of its PV segments is selected
So this patch causes the selection result to be properly propagated up to callers.
Call _init_processing_handle, _init_selection_handle and
_destroy_processing_handle in process_each_* and related functions to
set up and destroy handles used while processing items.
The init_processing_handle, init_selection_handle and
destroy_processing_handle are helper functions that allocate and
initialize the handles used when processing items in process_each_*
and related functions.
The "struct processing_handle" contains handles to drive the selection/matching
so pass it to the _select_match_* functions which are entry points to the
selection mechanism used in process_each_* and related functions.
This is revised and edited version of former Dave Teigland's patch which
provided starting point for all the select support in process_each_* fns.
The new "report_init_for_selection" is just a wrapper over
dm_report_init_with_selection that initializes reporting for selection
only. This means we're not going to do the actual reporting to output
for display and as such we intialize reporting as if no fields are reported
or sorted. The only fields "reported" are taken from the selection criteria
string and all such fields are marked as hidden automatically (FLD_HIDDEN flag).
These fields are used solely for selection criteria matching.
Also, modify existing report_object function that was used for reporting to
output for display. Now, it can either cause reporting to output or reporting
for selection only. The selection result is stored in struct selection_handle's
"selected" variable which can be handled further by any report_object caller.
This patch replaces "void *handle" with "struct processing_handle *handle"
in process_each_*, process_single_* and related functions.
The struct processing_handle consists of two handles inside now:
- the "struct selection_handle *selection_handle" used for
applying selection criteria while processing process_each_*,
process_single_* and related functions (patches using this
logic will follow)
- the "void* custom_handle" (this is actually the original handle
used before this patch - a pointer to custom data passed into
process_each_*, process_single_* and related functions).
Once LVM_COMMAND_PROFILE environment variable is specified, the profile
referenced is used just like it was specified using "<lvm command> --commandprofile".
If both --commandprofile cmd line option and LVM_COMMAND_PROFILE env
var is used, the --commandprofile cmd line option gets preference.
After commit 158e998876 where we may
start to readlv_attr with a 'shared' ioctl call for a single lvs line
we where obtaing single status for thin pools.
However this is not properly reflecting lvm2 reality.
Correcting this by reading lv status from layered thin pool, but lv info
from non-layered (linear) mapped device which is maintained for proper
cluster locking.
When repairing thin pool or swapping thin pool metadata,
preserve chunk_size property and avoid to be automatically changed
later in the code to better match thin pool metadata size.
Add separate LVSINFOSTATUS field type for fields which display both
dm info-like and dm status-like information.
The internal interface is there with the introduction of LVSSTATUS
field type which can cope with the combination of LVSSTATUS
and LVSINFO field types (several fields).
However, till now, we considered that *single* field can display
either LVSINFO or LVSSTATUS, but not both at the same time.
Till now, we haven't had single field which needs both - hence
add LVSINFOSTATUS field type for such fields as we currently
need this for the lv_attr field which requires combination of
info and status.
This patch just adds interface for an ability to register such fields
(the code that copes with this is already in).
A full search for duplicate PVs in the case of pvs -a
is only necessary when duplicates have previously been
detected in lvmcache. Use a global variable from lvmcache
to indicate that duplicate PVs exist, so we can skip the
search for duplicates when none exist.
Previously, 'pvs -a' displayed the VG name for only the device
associated with the cached PV (pv->dev), and other duplicate
devices would have a blank VG name. This commit displays the
VG name for each of the duplicate devices. The cost of doing
this is not small: for each PV processed, the list of all
devices must be searched for duplicates.
When multiple duplicate devices are specified on the
command line, the PV is processed once for each of them,
but pv->dev is the device used each time.
This overrides the PV device to reflect the duplicate
device that was specified on the command line. This is
done by hacking the lvmcache to replace pv->dev with the
device of the duplicate being processed. (It would be
preferable to override pv->dev without munging the content
of the cache, and without sprinkling special cases throughout
the code.)
This override only applies when multiple duplicate devices are
specified on the command line. When only a single duplicate
device of pv->dev is specified, the priority is to display the
cached pv->dev, so pv->dev is not overridden by the named
duplicate device.
In the examples below, loop3 is the cached device referenced
by pv->dev, and is given priority for processing. Only after
loop3 is processed/displayed, will other duplicate devices
loop0/loop1 appear (when requested on the command line.)
With two duplicate devices, loop0 and loop3:
# pvs
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m
# pvs /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m
# pvs /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m
# pvs -o+dev_size /dev/loop0 /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop0
PV VG Fmt Attr PSize PFree DevSize
/dev/loop0 loopa lvm2 a-- 12.00m 12.00m 16.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
With three duplicate devices, loop0, loop1, loop3:
# pvs -o+dev_size
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop1
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop3 /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop0 loopa lvm2 a-- 12.00m 12.00m 16.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop3 /dev/loop1
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop1 loopa lvm2 a-- 12.00m 12.00m 32.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop0 /dev/loop1
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop1 loopa lvm2 a-- 12.00m 12.00m 32.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
# pvs -o+dev_size /dev/loop0 /dev/loop1 /dev/loop3
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop1 not /dev/loop0
Found duplicate PV XhLbpVo0hmuwrMQLjfxuAvPFUFZqD4vr: using /dev/loop3 not /dev/loop1
PV VG Fmt Attr PSize PFree DevSize
/dev/loop0 loopa lvm2 a-- 12.00m 12.00m 16.00m
/dev/loop1 loopa lvm2 a-- 12.00m 12.00m 32.00m
/dev/loop3 loopa lvm2 a-- 12.00m 12.00m 32.00m
Processes a PV once for each time a device with its PV ID
exists on the command line.
This fixes a regression in the case where:
. devices /dev/sdA and /dev/sdB where clones (same PV ID)
. the cached VG references /dev/sdA
. before the regression, the command: pvs /dev/sdB
would display the cached device clone /dev/sdA
. after the regression, pvs /dev/sdB would display nothing,
causing vgimportclone /dev/sdB to fail.
. with this fix, pvs /dev/sdB displays /dev/sdA
Also, pvs /dev/sdA /dev/sdB will report two lines, one for each
device on the command line, but /dev/sdA is displayed for each.
This only works without lvmetad.
Support error_if_no_space feature for thin pools.
Report more info about thinpool status:
(out_of_data (D), metadata_read_only (M), failed (F) also as health
attribute.)
API for seg reporting is breaking internal lvm coding - it cannot
use vgmem mem pool for allocation of reported value.
So use separate pool instead of 'vgmem' for non vg related allocations
Add consts for many function params - but still many other are left
for now as non-const - needs deeper level of change even on libdm side.
If pvscan is run with device path instead of major:minor pair and this
device still exists in the system and the device is not visible anymore
(due to a filter that is applied), notify lvmetad properly about this.
This makes it more consistent with respect to existing pvscan with
major:minor which already notifies lvmetad about device that is gone
due to filters.
However, if the device is not in the system anymore, we're not able
to translate the original device path into major:minor pair which
lvmetad needs for its action (lvmetad_pv_gone fn). So in this case,
we still need to use major:minor pair only, not device path. But at
least make "pvscan --cache DevicePath" as near as possible to "pvscan
--cahce <major>:<minor>" functionality.
Also add a note to pvscan man page about this difference when using
pvscan --cache with DevicePath and major:minor pair.
When processing PVs specified on the command line, the arg
name was being matched against pv_dev_name, which will not
always work:
- The PV specified on the command line could be an alias,
e.g. /dev/disk/by-id/...
- The PV specified on the command line could be any random
path to the device, e.g. /dev/../dev/sdb
To fix this, first resolve the named PV args to struct device's,
then iterate through the devices for processing.
The {pv,vg,lv}display *do* use reporting in case "-C|--columns" is used.
The man page was correct, the recognition for the --binary was missing
in the code though!
The call to dm_config_destroy can derefence result->mem
while result is still NULL:
struct dm_config_tree *get_cachepolicy_params(struct cmd_context *cmd)
{
...
int ok = 0;
...
if (!(result = dm_config_flatten(current)))
goto_out;
...
ok = 1;
out:
if (!ok) {
dm_config_destroy(result)
...
}
...
}
ignore_vg now returns 0 for the FAILED_CLUSTERED case,
so all the ignore_vg 1 cases will return vg's with an
empty vg->pvs, so we do not need to iterate through
vg->pvs to remove the entries from the devices list.
Clean up whitespace problems in that area from the
previous commit.
- Fix problems with recent changes related to skipping in:
. _process_vgnameid_list
. _process_pvs_in_vgs
- Undo unnecessary changes to the code structure and readability.
- Preserve valid but minor changes:
. testing FAILED bit values in ignore_vg
. using "skip" value from ignore_vg instead of "ret" value
. applying the sigint check to the start of all loops
. setting stack backtrace when ECMD_PROCESSED is not returned,
i.e. apply the following pattern:
ret = process_foo();
if (ret != ECMD_PROCESSED)
stack;
if (ret > ret_max)
ret_max = ret;