IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When moving parts of striped LVs, pvmove wouldn't care about leaving you with
two stripes on the same disk. Now --alloc anywhere is needed for that.
(Tried and gave up on two alternative approaches before the one committed here.)
. Add "monitoring" option to "activation" section of lvm.conf
. Have clvmd consult the lvm.conf "activation/monitoring" too.
. Introduce toollib.c:get_activation_monitoring_mode().
. Error out when both --monitor and --ignoremonitoring are provided.
. Add --monitor and --ignoremonitoring support to lvcreate. Update
lvcreate man page accordingly.
. Clarify that '--monitor' controls the start and stop of monitoring in
the {vg,lv}change man pages.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Similar refactoring to vgchange - pull out common parts and put into
library function for reuse. Should be no functional change.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Pull out common code to be called from tools as well as lvm2app.
Leave archive() at tool level so we can use from vgcreate
as well as vgchange. Should be no functional change.
- add stack macro in vgchange
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Internally we store sizes in sectors, but lvm2app exports sizes
in bytes. We could get fancier and allow units configuration but
this fix should do for now.
Fixes rhbz561422.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
where we should not expose internal VG names/uuids (the ones with "#" prefix )through the
interface. Otherwise, we could end up with library users opening internal VGs which will
initiate locking mechanism that won't be cleaned up properly.
"#orphans_{lvm1, lvm2, pool}" names are treated in a special way, they are truncated first
to "orphans" and this is used as a part of the lock name then (e.g. while calling lvm_vg_open()).
When library user calls lvm_vg_close(), the original name "orphans_{lvm1, lvm2, pool}"
is used directly and therefore no unlock occurs.
We should exclude internal VG names and uuids in the lists provided by lvmcache:
lvmcache_get_vgids() and lvmcache_get_vgnames().
Eliminate 'merging_snapshot' from 'struct logical_volume' and just use
'snapshot' for origin lv's reference to the merging snapshot; also set
MERGING in the origin lv's status.
Make 'merging_snapshot' pointer that points from the origin to the
segment that represents the merging snapshot.
Import/export 'merging_store' metadata.
Do not allow creating snapshots while another snapshot is merging.
Snapshot created in this state would certainly contain invalid data.
NOTE: patches at the end of this series will remove 'merging_snapshot'
and will introduce helpful wrappers and cleanups.
The physical_volume, volume_group, logical_volume and lv_segment
structures' 'status' member is now uint64_t.
The alignment of these structures was also audited to remove holes. The
movement of some members in 'volume_group' and 'lv_segment' eliminates
holes. The 'physical_volume' structure still has one 4-byte hole after
'pe_size'; the other structures no longer have any holes. Each
structures' size has not changed.
Rename fill_default_pvcreate_params to pvcreate_params_set_defaults.
Rename pvcreate_validate_restore_params to pvcreate_restore_params_validate.
Rename pvcreate_validate_params to pvcreate_params_validate.
Similar to other vg_set_* functions, we create a vg_set_clustered() function
which does a few checks and sets a flag. This is where we check for
any limitations of clusters.
We need defaults for pvcreate_params at a higher level - this will
allow us to use a common function from the tools to take defaults,
then fill in any non-defaults from the commandline.
Future patches will refactor vgcreate/vgextend to call this function
if one or more pvcreate parameters are given on the commandline.
Another refactoring for implicit pvcreate support. We need to get
the pvcreate parameters somehow to the vg_extend routine. Options
seemed to be:
1. Attach the parameters to struct volume_group. I personally
did not like this idea in most cases, though one could make an
agrument why it might be ok at least for some of the parameters
(e.g. metadatacopies).
2. Pass them in to the extend routine. This second route seemed
to be the best approach given the constraints.
Future patches will parse the command line and fill in the actual
values for the pvcreate_single call.
Should be no functional change.
Clean up VG_RESIZEABLE flag by creating vg_is_resizeable().
Update comment - we no longer have ALLOW_RESIZEABLE.
Also use vg_is_exported() in one place missed by earlier patch.
Should be no functional change.
Of the vgs field vg_attr, a few of the most likely to be used attributes
are clustered, exported, and partial. This patch adds the following 3
functions:
uint64_t lvm_vg_is_clustered(const vg_t vg)
uint64_t lvm_vg_is_exported(const vg_t vg)
uint64_t lvm_vg_is_partial(const vg_t vg)
Split vg_remove_single into vg_remove_check (mandatory checks before
vgremove) and vg_remove (do actual remove by committing to disk).
In liblvm, we'd like to provide an consistent API that allows multiple
changes in memory, then let lvm_vg_write() control the commit to disk. In
some cases (for example, lvresize calls fsadm) this may not be possible.
However, since we are using an object model and dividing things into small
operations, the most logical model seems to be the lvm_vg_write model, and
handling the special cases as they arrive. So as best as possible
we move towards this end.
A possible optimization would be to consolidate vg_remove (committing)
code with vgreduce code. A second possible optimization is making vgreduce
of the last device equivalent to vgremove. Today, lvm_vg_reduce fails if
vgreduce is called with the last device, but from an object model perspective
we could view this as equivalent to vgremove and allow it. My gut feel is
we do not want to do this though.
Author: Dave Wysochanski <dwysocha@redhat.com>
Later patches should consolidate the vgremove / vgreduce functions but for
now let's clarify what vg_remove actually does by changing the name.
Author: Dave Wysochanski <dwysocha@redhat.com>
Adds pe_align_offset to 'struct physical_volume'; is initialized with
set_pe_align_offset(). After pe_start is established pe_align_offset is
added to it.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
For now, a simple way to enforce the read/write semantics is to just save the
open mode of the VG. If the caller uses lvm_vg_create, the mode is write.
The caller using lvm_vg_open can use either read or write to open the VG.
Once we have this, we enforce the permissions on each API call and don't allow
a caller to modify a VG that has not been opened properly.
This may be better combined with the locking mode, but I view that as future
cleanup, past this initial release. The intial release should enforce the
basic object semantics though, as described in the lvm.h file.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Adding the ability to get the seqno is important for an application to
determine if something has changed in a VG. Otherwise, the only way to
know is to open the VG with write permission and hold the handle.
This function behaves a little bit different than vg_reduce_single, because
it allowes to remove even the latest pv. This has been done to be consistent
to lvm_vg_create, which creates an empty vg.
removed_pvs has been added to the volume_group struct. vg_reduce adds remove
pvs to this list to be able to commit the changes for the pvs in lvm_vg_comm
in liblvm2app.
Initialize removed_pvs list in format-specific volume_group constructors.
Ideally, we should have a base constructor here that initializes the general
non-format specific members of struct volume_group. But until then, there
are multiple places to initialize these members. Maybe a better patch would
be a base constructor patch for struct volume_group. That is more work
though.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Thomas Woerner <twoerner@redhat.com>
Author: Dave Wysochanski <dwysocha@redhat.com>
For liblvm 'get' functions, we should share code with the reporting functions.
This means we need common code to return the values for the fields.
In this patch we refactor a few of the fields needed in liblvm.
Unfortunately, for the simple fields that do derefernces of structure
members (for example, vg_extent_count), we cannot call the common function
from the reporting infrastructure without more refactoring. The reason is
that the dereference of the simple fields is done deep inside the reporting
code (to get the generic "data" pointer), and the display function is a
generic 'size32' function. We can fix these issues later with more
refactoring.
Should be no functional change and the testsuite should cover any possible
regressions. The only fields in the report affected by this patch are:
vg_size, vg_free, and pv_mda_count.
Author: Dave Wysochanski <dwysocha@redhat.com>
After some refactorings, we can now move the bulk of _lvcreate into the
internal library, and we can call from liblvm. In the future, we should
refactor lv_create_single further, probably by segtype, to reduce the
size of struct lvcreate_params. For now this is a reasonable refactor
and allows us to re-use the function from liblvm.
Author: Dave Wysochanski <dwysocha@redhat.com>
In preparation for implicit pvcreate during vgcreate / vgextend,
move bulk of pvcreate logic inside library.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Author: Dave Wysochanski <dwysocha@redhat.com>
Define the 5 main liblvm objects to be the pv, vg, lv, lvseg, and pvseg.
We need handles defined to all these objects in order for liblvm to be
equivalent to the reporting commands pvs, vgs, and lvs.
- move vg_t, lv_t, and pv_t from metadata-exported.h into lvm.h
- move lv_segment and pv_segment forward declarations into lvm.h
- add lvseg_t and pvseg_t to lvm.h
NOTE: We currently have an inconsistency in handle definitions.
lvm_t is defined as a pointer, while these other handles are just
structures. We should pick one scheme and be consistent - perhaps
define all handles as pointers (this is what I've seen elsewhere).
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
The checks for RESIZEABLE_VG should now be inside the various functions that
have to do such operations.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
In the future we may export these functions or something like them in liblvm
For now this helps in cleaning up the checks for RESIZEABLE since we can
use the internal library function vg_bad_status_bits.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
Move check for active LVs outside of library function. The vgremove
liblvm function function will fail if there are active LVs. It will
be the application's responsibility to check this condition and remove
the LVs individually before calling vgremove. Note also that we've
duplicated the EXPORTED_VG check in vgremove_single (tools) and
vg_remove_single (library). Duplication seemed the only option here
since we don't want to do the automatic removal of LVs (in the tools)
if the vg is exported, and we still need to protect the library call
from removal if the vg is exported.
We still need to deal with the ORPHAN lock but vg_remove_single is now
very close to our liblvm function.
TODO: Refactor lvremove in a similar way.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
vg_t *vg_create(struct cmd_context *cmd, const char *vg_name);
This is the first step towards the API called to create a VG.
Call vg_lock_newname() inside this function. Use _vg_make_handle()
where possible.
Now we have 2 ways to construct a volume group:
1) vg_read: Used when constructing an existing VG from disks
2) vg_create: Used when constructing a new VG
Both of these interfaces obtain a lock, and return a vg_t *.
The usage of _vg_make_handle() inside vg_create() doesn't fit
perfectly but it's ok for now. Needs some cleanup though and I've
noted "FIXME" in the code.
Add the new vg_create() plus vg 'set' functions for non-default
VG parameters in the following tools:
- vgcreate: Fairly straightforward refactoring. We just moved
vg_lock_newname inside vg_create so we check the return via
vg_read_error.
- vgsplit: The refactoring here is a bit more tricky. Originally
we called vg_lock_newname and depending on the error code, we either
read the existing vg or created the new one. Now vg_create()
calls vg_lock_newname, so we first try to create the VG. If this
fails with FAILED_EXIST, we can then do the vg_read. If the
create succeeds, we check the input parameters and set any new
values on the VG.
TODO in future patches:
1. The VG_ORPHAN lock needs some thought. We may want to treat
this as any other VG, and require the application to obtain a handle
and pass it to other API calls (for example, vg_extend). Or,
we may find that hiding the VG_ORPHAN lock inside other APIs is
the way to go. I thought of placing the VG_ORPHAN lock inside
vg_create() and tying it to the vg handle, but was not certain
this was the right approach.
2. Cleanup error paths. Integrate vg_read_error() with vg_create and
vg_read* error codes and/or the new error APIs.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
NOTE: vg_set_alloc_policy() returns success if you try to set a value that
is already stored. The behavior of vgchange is the same though - it fails.
There is a fixme noted in the code about this inconsistency, which should
be resolved if possible.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
In liblvm, we will reserve the word 'change' to mean an API that
both sets one or more values, and commits to disk. This will be
consistent with the LVM commandline. The existing vg_change_pesize()
function does not commit to disk, but just changes the extent_size
and ensures all internal structures are updated. This logic should
be contained in a function that sets the value.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Remove unneeded LOCK_NONBLOCKING from vg_read() API and tools that
use it. We no longer need this flag anywhere since we now automatically
set LCK_NONBLOCK inside lock_vol() if vgs_locked().
For further details, see:
commit d52b3fd3fe
Author: Dave Wysochanski <dwysocha@redhat.com>
Date: Wed May 13 13:02:52 2009 +0000
Remove NON_BLOCKING lock flag from tools and set a policy to auto-set.
As a simplification to the tools and further liblvm, this patch pushes
the setting of NON_BLOCKING lock flag inside the lock_vol() call.
The policy we set is if any existing VGs are currently locked, we
set the NON_BLOCKING flag.
At some point it may make sense to add this flag back if we get an
RFE from a liblvm user, but for now let's keep it as simple as
possible.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Remove READ_CHECK_EXISTENCE and vg_might_exist().
This flag and API is no longer used now that we have a separate
API to check for existence.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Remove unneeded LOCK_KEEP from vg_read() interface.
Update comment to clarify cases where _vg_lock_and_read() may return
with an error but the lock held. Would be nice to make the vg_read()
interface consistent with regards to lock held and error behavior.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Sun May 3 12:32:30 CEST 2009 Petr Rockai <me@mornfall.net>
* Rework the toollib interface (process_each_*) on top of new vg_read.
Rebased 6/26/09 by Dave W.
- Add skipping message to process_each_lv
- Remove inconsistent_t.
Various tools need to check for existence of a VG before doing something
(vgsplit, vgrename, vgcreate). Currently we don't have an interface to
check for existence, but the existence check is part of the vg_read* call(s).
This patch is an attempt to pull out some of that functionality into a
separate function, and hopefully simplify our vg_read interface, and
move those patches along.
vg_lock_newname() is only concerned about checking whether a vg exists in
the system. Unfortunately, we cannot just scan the system, but we must first
obtain a lock. Since we are reserving a vgname, we take a WRITE lock on
the vgname. Once obtained, we scan the system to ensure the name does
not exist. The return codes and behavior is in the function header.
You might think of this function as similar to an open() call with
O_CREAT and O_EXCL flags (returns failure with -EEXIST if file already
exists).
NOTE: I think including the word "lock" in the function name is important,
as it clearly states the function obtains a lock and makes the code more
readable, especially when it comes to cleanup / unlocking. The ultimate
function name is somewhat open for debate though so later we may rename.
Several commands calls process_each_vg() and in provided
callback it explicitly recovers VG if inconsistent.
(vgchange, vgconvert, vgscan)
It means that old VG is released and reread but the function
above (process_one_vg) tries to unlock and release old VG.
Patch moves the repair logic into _process_one_vg() function.
It always tries to read vg (even inconsistent) and then decides
what to do according new defined parameter.
Also patch unifies inconsistent error messages.
The only slight change if for vgremove command, where
it now tries to repair VG before it removes if force arg is given.
(It works similar way before, just the order of operation changed).
When mirror convert polling is started (mainly as backgound process,
in lvchange -a y or in lvconvert itself) it tries to read VG
and LV identified by its name.
Unfortunatelly, the VG can have already different LV under the same name,
and various more or less funny things can happen (note that
_finish_lvconvert_mirror suspends the volume for example).
(the typical example is our testing script which continuously recreates
LVs under the same name in the same VG.)
This patch adds optional uuid parameter which helps to properly
select the monitoring object. For lvconvert polling it is set to LV UUID
and both _get_lvconvert_vg and _get_lvconvert_lv uses it to read proper VG/LV.
(In the pvmove case it is NULL, here we poll for physical volume name).
We can temporarily violate max_lv during mirror conversion etc.
(If the operation fails, orphan mirror images are visible to administrator
for manual remove for example. Not that this should ever happen:-)
Force limit only for lvcreate (and vg merge) command.
Patch also adds simple max_lv tests into testsuite
The vg->lv_count parameter now includes always number of visible
logical volumes.
Note that virtual snapshot volume (snapshotX) is never visible,
but it is stored in metadata with visible flag.
link_lv_to_vg and unlink_lv_from_vg are the only functions
for adding/removing logical volume from volume group.
Only these function should manipulate with vg->lvs list.
The snapshot segment (snapshotX) is created twice
during the text metadata segment processing.
This can cause temporary violation of max_lv count.
Simplify the code, snapshot segment is properly initialized
in init_snapshot_seg function now and do not need to be replaced
by vg_add_snapshot call.
The vg_add_snapshot() is now usefull only for adding new
snapshot and it shares the same initialization function.
The snapshot name is always generated, name paramater can be
removed from function call.
Add lvs origin_size field.
Fix linux configure --enable-debug to exclude -O2.
Still a few rough edges, but hopefully usable now:
lvcreate -s vg1 -L 100M --virtualoriginsize 1T
Since now, all code reading volume group is responsible for releasing
the memory allocated by calling vg_release(vg).
(For simplicity of use, vg_releae can be called for vg == NULL,
the same logic like free(NULL)).
Also providing simple macro for unlocking & releasing in one step,
tools usualy uses this approach.
The global memory pool (cmd->mem) should be used only for global
physical volume operations.
This patch have to be applied with all subsequent patches to complete
memory pool per vg logic.
Using separate memory pool has quite bit memory saving impact when
using large VGs, this is mainly needed when we have to use
preallocated and locked memory (and should not overflow from that
memory space).
This patch is not fully tested and leaves some related bugs unfixed.
Intended behaviour of the code now:
pe_start in the lvm2 format PV label header is set only by pvcreate (or
vgconvert -M2) and then preserved in *all* operations thereafter.
In some specialist cases, after the PV is added to a VG, the pe_start
field in the VG metadata may hold a different value and if so, it
overrides the other one for as long as the PV is in such a VG.
Currently, the field storing the size of the data area in the PV label
header always holds 0. As it only has meaning in the context of a
volume group, it is calculated whenever the PV is added to a VG (and can
be derived from extent_size and pe_count in the VG metadata).