IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit a125a3bb50 "lv_remove: reduce commits for removed LVs"
changed "lvremove <vgname>" from removing one LV at a time,
to removing all LVs in one vg write/commit. It also changed
the behavior if some of the LVs could not be removed, from
removing those LVs that could be removed, to removing nothing
if any LV could not be removed. This caused a regression in
shared VGs using sanlock, in which the on-disk lease was
removed for any LV that could be removed, even if the command
decided to remove nothing. This would leave LVs without a
valid ondisk lease, and "lock failed: error -221" would be
returned for any command attempting to lock the LV.
Fix this by not freeing the on-disk leases until after the
command has decided to go ahead and remove everything, and
has written the VG metadata.
Before the fix:
node1: lvchange -ay vg/lv1
node2: lvchange -ay vg/lv2
node1: lvs
lv1 test -wi-a----- 4.00m
lv2 test -wi------- 4.00m
node2: lvs
lv1 test -wi------- 4.00m
lv2 test -wi-a----- 4.00m
node1: lvremove -y vg/lv1 vg/lv2
LV locked by other host: vg/lv2
(lvremove removed neither of the LVs, but it freed
the lock for lv1, which could have been removed
except for the proper locking failure on lv2.)
node1: lvs
lv1 test -wi------- 4.00m
lv2 test -wi------- 4.00m
node1: lvremove -y vg/lv1
LV vg/lv1 lock failed: error -221
(The lock for lv1 is gone, so nothing can be done with it.)
Detect when we have mixed dos partition with gpt's PMBR partition.
This is not a sane configuration, but detect it anyway, just in case
someone configures such partition layout manually and forcefully and
incorrectly defines one of the partition types to be the GPT's PMBR.
For example:
❯ fdisk -l /dev/sdc
Device Boot Start End Sectors Size Id Type
/dev/sdc1 2048 67583 65536 32M 83 Linux
/dev/sdc2 67584 262143 194560 95M ee GPT
Before:
(The partition filter passes even though there's real existing dos
partition - the empty GPT PMBR overrides it.)
❯ pvcreate /dev/sdc
WARNING: PMBR signature detected on /dev/sdc at offset 510. Wipe it? [y/n]:
Wiping PMBR signature on /dev/sdc.
Physical volume "/dev/sdc" successfully created.
With this patch applied:
(The GPT PMBR does not override the existence of the dos partition.)
❯ pvcreate /dev/sdc
Cannot use /dev/sdc: device is partitioned
This provides better hints when trying to resize the fs on top of an LV.
Also needs a3f6d2f593 for proper operation.
❯ lvs -o name,size vg/swap
lv_name lv_size
swap 60.00m
Before:
❯ lvextend -L72m vg/swap
Size of logical volume vg/swap changed from 60.00 MiB (15 extents) to 72.00 MiB (18 extents).
Logical volume vg/swap successfully resized.
❯ lvreduce -L60m vg/swap
File system swap found on vg/swap.
File system device usage is not available from libblkid.
❯ lvreduce -L50m vg/swap
Rounding size to boundary between physical extents: 52.00 MiB.
File system swap found on vg/swap.
File system device usage is not available from libblkid.
After:
❯ lvextend -L72m vg/swap
Size of logical volume vg/swap changed from 60.00 MiB (15 extents) to 72.00 MiB (18 extents).
Logical volume vg/swap successfully resized.
❯ lvreduce -L60m vg/swap
File system swap found on vg/swap.
File system size (60.00 MiB) is equal to the requested size (60.00 MiB).
File system reduce is not needed, skipping.
Size of logical volume vg/swap changed from 72.00 MiB (18 extents) to 60.00 MiB (15 extents).
Logical volume vg/swap successfully resized.
❯ lvreduce -L50m vg/swap
Rounding size to boundary between physical extents: 52.00 MiB.
File system swap found on vg/swap.
File system size (60.00 MiB) is larger than the requested size (52.00 MiB).
File system reduce is required and not supported (swap).
blkid does not report FSLASTBLOCK for a swap device. However, blkid
does report FSSIZE for swap devices, so use this field (and including
the header size which is of FSBLOCKSIZE for the swap) instead to
set the "filesystem last block" which is used subsequently for
further calculations and conditions.
We already detect msdos partition table. If it is empty, that is, there
is just the partition header and no actual partitions defined, then the
filter-partitioned passes, otherwise not.
Do the same for GPT partition table.
New config setting sanlock_align_size can be used to configure
the sanlock lease size that lvmlockd will use on 4K disks.
By default, lvmlockd and sanlock use 8MiB align_size (lease size)
on 4K disks, which supports up to 2000 hosts (and max host_id.)
This can be reduced to 1, 2 or 4 (in MiB), to reduce lease i/o.
The reduced sizes correspond to smaller max hosts/host_id:
1 MiB = 250 hosts
2 MiB = 500 hosts
4 MiB = 1000 hosts
8 MiB = 2000 hosts (default)
(Disks with 512 byte sectors always use 1MiB leases and support
2000 hosts/host_id, and are not affected by this.)
In cases user is sure he is not using his 'rootfs' or 'swap' on LVs
managed with his command - it possible to completely bypass pinning
process to RAM which may eventually slightly speedup command execution,
(however at the risk the process can be eventually delayed by swapping).
Basicaly use this only at your risk...
TODO: add some dmeventd support for this.
Previously, lvmlockd detected the end of the lvmlock LV
by doing i/o to it until an i/o error was returned.
This triggered sanlock warning messages, so use the LV
size to avoid accessing beyond the end of the device.
Previously, every lvcreate would refresh the lvmlock LV
in case another machine had extended it. This involves
a lot of unnecessary work in most cases, so now compare
the LV size and device size to detect when a refresh is
needed.
lvremove of a thin lv while the pool is inactive would
leave the pool locked but inactive.
lvcreate of a thin snapshot while the pool is inactive
would leave the pool locked but inactive.
lvcreate of a thin lv could activate the pool to check
a threshold before the pool lock was acquired in lvmlockd.
The lv_hash wasn't being passed to the seg-specific text import
functions, so they were doing many find_lv() calls which consumes
a lot of time when there are many LVs in the metadata.
While performing udev sync semaphore's inc/dec operation, we use the
result from GETVAL semctl just to print a debug message with current
value of that sempahore, nothing else.
If the GETVAL fails for whetever reason while the actual inc/dec
completes successfully, just log a warning message about the GETVAL
(and print the debug messages without the actual semaphore value)
and return success for the inc/dec operation as a whole.
Clean up udev sync semaphore on fail path during its creation, otherwise
the caller will have no handle returned to clean it up itself and the
semaphore will keep staying in the system. The only way to clean it up
would be to call `dmsetup udevcomplete_all` which would destroy all
udev sync semaphores, not just the failed one, which we don't want.
The same message is printed while performing create/inc/dec operation and
the GETVAL semctl fails. Add a prefix so we know exactly in which of
these functions the issue actually happened.