IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Rename dev_read() to dev_read_buf() - the function that reads data
into a supplied buffer.
Introduce a new dev_read() that allocates the buffer it returns and
switch the important users over to this. No caller may change the
returned data. (For now, callers are responsible for freeing it after
use, but later the device layer will take full ownership.)
dev_read_buf() should only be used for tiny buffers or unimportant code
(such as the old disk formats).
The creation of wrapped around metadata - where the start of metadata is
written up to the end of the buffer and the remainder follows back at
the start of the buffer - is now restricted to cases where writing the
metadata in one piece wouldn't fit. This shouldn't happen in 'normal'
usage so let's begin treating the code for this as a special case that
can be ignored when optimising 'normal' cases.
If there is sufficient space in the metadata area, align the next
metadata to a disk offset that is a multiple of 4096 bytes and
don't write it circularly. If it doesn't all fit at the end
of the metadata area, go back to the start and write it all there
contiguously.
If there is insufficient space to use the new stricter rules, revert to
the original behaviour, aligning on 512-byte boundaries wrapping around
the circular buffer as required.
Even after writing some metadata encountered problems, some commands
continue (rightly or wrongly) and attempt to make further changes.
Once an mda is marked MDA_FAILED, don't try to use it again.
This also applies when reverting, where one loop already skips
failed mdas but the other doesn't.
This fixes some device open_count warnings on relevant failure paths.
Use new ALIGN_ABSOLUTE macro when calculating the start location
of new metadata and adjust the end of buffer detection so that
there is no longer an imposed gap between old and new metadata.
Currently both start and offset should always be divisible by alignment,
so this should have no effect, but a later patch will increase alignment
so these variables can no longer be optimised out.
Although it doesn't look like it can be a measurable problem
and costs some time to flip priorities outside of activation window.
So just like with memory locking preserve priority until call
memlock_unlock() appears.
(addition to commit c086dfadc3).
Expand out the metadata wrapping calculations to prepare
to support a larger alignment.
The current alignment is 512 bytes so
(mdac_area_start + rlocn->offset) % alignment is zero.
Mark the first metadata area on each text format PV as MDA_PRIMARY.
Pass this information down to the device layer so that when
there are two metadata areas on a block device, we can easily
distinguish two independent streams of I/O.
In case of failed legs, raid replaces those with
e.g. "vg-lv_rimage_0-missing_0_0" mapped to an error target.
Those errouneously remain on deactivation.
Fix by removing them on deactivation/removal of the RaidLV.
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
If the recovery of the repleced leg(s) of a RaidLV created without
initial resynchronization (i.e. "lvcreate --nosync ...") got
interrupted, it can't be extended because of the < 100% sync rate.
In case caller passes in changed stripe size when reshaping raid4/5
to 1 stripe aiming to convert to raid1 and optionally to linear,
ignore it to prevent data corruption.
Use new 3rd. state of trace_pvmove_deps == 2.
In this state we know, we have already seen the node and can skip futher
testing. Remainging value 1 signals we want to track, and value 0
is for ignoring tracking, but node is still checking in this case.
Reduces large amount of duplicate ioctl queries.
Check also all snapshosts when resume is requested,
the origin volume is already resume, but possibly
some subLV or snapshot LV could be suspended if
we are still in critical_section.
When entering any critical section, lvm2 used to lock process memory
and raised task priority to avoid problem with page swapping and minimize
time of having non-resumed devices in table.
With this patch, memory locking which which is expensive is only used when
entering 'suspending' section as only in this section there is risk
lvm could be suspending a device which later can be needed for paging.
Raised priority is still kept for all section entrances as this is
low-cost operation and may accelerate table resumes - although the real
impact can be still considered later.
When pvmove is finished and metadata are updated, the code missed
to merge possible mergable segments - so add explicit merging
call after pvmoved volumes are unlocked.
This avoids weird results where i.e. lvs could have been reporting
non-matching segments as lvs upon metadata read is doing silent segment
merging while dm table left after pvmove was still preserving
non-merged segments.
ATM we want to support delayed resume purely in pvmove case.
So have libdm logic internal to recognize difference beween
pvmove and other targets that do use delayed resume.
This fixes problem introduced with commit aa68b898ff
for mirror-on-mirror or snapshot-on-mirror problem.
TODO: likely added new API call and let libdm user select
delayed nodes explicitely.
Use code which detectes handlers in a way, which is more
backward-compatible friendly.
Replace read of 'sysfs' uuid entry with dm ioctl call.
Use /sys/block/dm-X/holders path instead of
new path /sys/dev/block/major:minor/holders.
TODO:
There are few more occurencies of this logic around the code
so some abstract interface should be considered.
In some cases the message could be slightly misleading so use
here rather conditional.
TODO:
In future we may possibly further tune the message in case we are
certain the level of redundancy protection has not been reduced.
When pvmove is finished and does 'suspend/resume' on PVMOVE LV,
on resume path committed metadata are already showing 'standalone'
pvmove LV prepared just for removal.
However code should be able to 'resume' preloaded LV there were
participating in pvmove operation.
Previously this was all done in the 'tools' part of lvm2 code.
So the lvconvert upon pvmove finish had to explicitely call 'resume' on every such LV.
Now 'smarted' activation code is able to deduce and combine all information from
the active dm table and committed metadata so single call resolves
it all in one go.
Internally holders are detected by reading sysfs directory to capture
all needed UUID which are then looked in lvm2 metadata and all such
LVs are automatically collected into dmtree.
Replace complex code with standard lv_update_and_reload_origin().
Extra suspend should not be necessary.
(If they would be - dependency tree would have bug for fixing).
Only thin-pool with origin_only suspend is allowed to be not suspending anything.
In such case pairing resume will 'decrement' critical section counter.
Just like suspend handles preload for pvmove finish,
in similar way handle suspend of starting pvmove.
In this case the precommited metadata are checked for list of PVMOVEed
LVs and those are suspended in with committed metadata.
There is no need to differentiation between clustered VG and normal VG.
As the activation depends on locking type.
Use unconditionally locally exclusive activation for pvmove.
Whenever pvmove tree is going to be generated for suspend
and such LV has a user - use this 'using LV' to generate
correct dm tree holding all components.
LV is asked for resume, and its already resume and tool
is inside 'critical_section()' check if there is any suspended sub LV.
In that case 'resume' operation will not be skipped.
When activation of LVs fails prior pvmove start, try to deactivate
already activated LVs.
TODO: possibly remember which LVs where already activate and only those
take down - devices which are already in-use will stay active.
Only lv_committed() now uses vg->vg_committed and it appears redundant
if its contents match the enclosing VG so don't waste cycles creating it
when that's known to be true when no write lock is held so the struct
won't get modified.
- Use 'lvmcache' consistently instead of 'metadata cache'
- Always use 5 characters for source line number
- Remember to convert uuids into printable form
- Use <no name> rather than (null) when VG has no name.
If the suspend/resume sequence would leave some device in suspend
for possible later resume, backup cannot be takes (fs holding backups
could be still frozen in critical section())
Move check for presence of raid4 into the right place
so there is no way how to hit activation of any LV
with raid4 on kernel which does not support it.
Commit 763db8aab0 rejects 2-legged
conversions to striped/raid0 but different messages are displayed
for raid0 or striped. This commit provides the same rejection messages.
raid4/5 LVs may only be converted to striped or raid0/raid0_meta
in case they have at least 3 legs. 2-legged raid4/5 are a result
of either converting a raid1 to raid4/5 (takeover) or converting
a raid4/5 with more than 2 legs to raid1 with 2 legs (reshape).
The raid4/5 personalities map those as raid1,
thus reject conversion to striped/raid0.
Resolves: rhbz1511047
Since vg_validate() now rejects LVs without segments and
insert_layer_for_segments_on_pv() gets just created
'layer_lv' without segment, it needs to be hidden
from vg->lvs during processing of _align_segment_boundary_to_pe_range()
as this function calls lv_validate() and now requires
vg to be consistent. LV is then put back into vg->lvs.
Since 4fa5add6b1 ("pvcreate: Wipe cached
bootloaderarea when wiping label.") label_remove is responsible
for the lvmcache_del. (toollib and liblvm need fixing to share
the code.)
When an ignored metadata area gets flagged for use again, make sure the
code doesn't try to parse its old metadata. Firstly by trying to detect
this situation and skipping the read (while still remembering the
position reached in the circular buffer), and secondly by clearing the
invalid live metadata location on disk as a precaution when subsequently
writing out the precommitted metadata.
Problems showed up when a metadata area in one VG got moved to
another VG in ignored state (still holding metadata for the original
VG) and then later got brought into use in the new VG - only the header
should be read in this case, not any of the metadata content.
vgsplit shares the vg_rename code so that must only set the PV_MOVED_VG
flag introduced in commit 486ed10848
("vgmerge: Fix intermediate metadata corruption") on PVs that moved.
Since both lvcreate and lvconvert needs to check for same
type of allowed origin for snapshot - move the code into
a single function.
This way we also fix several inconsitencies where snapshot
has been allowed by mistake either through lvcreate or
lvconvert path.