IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The fact that vg repair is implemented as a part of vg read
has led to a messy and complicated implementation of vg_read,
and limited and uncontrolled repair capability. This splits
read and repair apart.
Summary
-------
- take all kinds of various repairs out of vg_read
- vg_read no longer writes anything
- vg_read now simply reads and returns vg metadata
- vg_read ignores bad or old copies of metadata
- vg_read proceeds with a single good copy of metadata
- improve error checks and handling when reading
- keep track of bad (corrupt) copies of metadata in lvmcache
- keep track of old (seqno) copies of metadata in lvmcache
- keep track of outdated PVs in lvmcache
- vg_write will do basic repairs
- new command vgck --updatemetdata will do all repairs
Details
-------
- In scan, do not delete dev from lvmcache if reading/processing fails;
the dev is still present, and removing it makes it look like the dev
is not there. Records are now kept about the problems with each PV
so they be fixed/repaired in the appropriate places.
- In scan, record a bad mda on failure, and delete the mda from
mda in use list so it will not be used by vg_read or vg_write,
only by repair.
- In scan, succeed if any good mda on a device is found, instead of
failing if any is bad. The bad/old copies of metadata should not
interfere with normal usage while good copies can be used.
- In scan, add a record of old mdas in lvmcache for later, do not repair
them while reading, and do not let them prevent us from finding and
using a good copy of metadata from elsewhere. One result is that
"inconsistent metadata" is no longer a read error, but instead a
record in lvmcache that can be addressed separate from the read.
- Treat a dev with no good mdas like a dev with no mdas, which is an
existing case we already handle.
- Don't use a fake vg "handle" for returning an error from vg_read,
or the vg_read_error function for getting that error number;
just return null if the vg cannot be read or used, and an error_flags
arg with flags set for the specific kind of error (which can be used
later for determining the kind of repair.)
- Saving an original copy of the vg metadata, for purposes of reverting
a write, is now done explicitly in vg_read instead of being hidden in
the vg_make_handle function.
- When a vg is not accessible due to "access restrictions" but is
otherwise fine, return the vg through the new error_vg arg so that
process_each_pv can skip the PVs in the VG while processing.
(This is a temporary accomodation for the way process_each_pv
tracks which devs have been looked at, and can be dropped later
when process_each_pv implementation dev tracking is changed.)
- vg_read does not try to fix or recover a vg, but now just reads the
metadata, checks access restrictions and returns it.
(Checking access restrictions might be better done outside of vg_read,
but this is a later improvement.)
- _vg_read now simply makes one attempt to read metadata from
each mda, and uses the most recent copy to return to the caller
in the form of a 'vg' struct.
(bad mdas were excluded during the scan and are not retried)
(old mdas were not excluded during scan and are retried here)
- vg_read uses _vg_read to get the latest copy of metadata from mdas,
and then makes various checks against it to produce warnings,
and to check if VG access is allowed (access restrictions include:
writable, foreign, shared, clustered, missing pvs).
- Things that were previously silently/automatically written by vg_read
that are now done by vg_write, based on the records made in lvmcache
during the scan and read:
. clearing the missing flag
. updating old copies of metadata
. clearing outdated pvs
. updating pv header flags
- Bad/corrupt metadata are now repaired; they were not before.
Test changes
------------
- A read command no longer writes the VG to repair it, so add a write
command to do a repair.
(inconsistent-metadata, unlost-pv)
- When a missing PV is removed from a VG, and then the device is
enabled again, vgck --updatemetadata is needed to clear the
outdated PV before it can be used again, where it wasn't before.
(lvconvert-repair-policy, lvconvert-repair-raid, lvconvert-repair,
mirror-vgreduce-removemissing, pv-ext-flags, unlost-pv)
Reading bad/old metadata
------------------------
- "bad metadata": the mda_header or metadata text has invalid fields
or can't be parsed by lvm. This is a form of corruption that would
not be caused by known failure scenarios. A checksum error is
typically included among the errors reported.
- "old metadata": a valid copy of the metadata that has a smaller seqno
than other copies of the metadata. This can happen if the device
failed, or io failed, or lvm failed while commiting new metadata
to all the metadata areas. Old metadata on a PV that has been
removed from the VG is the "outdated" case below.
When a VG has some PVs with bad/old metadata, lvm can simply ignore
the bad/old copies, and use a good copy. This is why there are
multiple copies of the metadata -- so it's available even when some
of the copies cannot be used. The bad/old copies do not have to be
repaired before the VG can be used (the repair can happen later.)
A PV with no good copies of the metadata simply falls back to being
treated like a PV with no mdas; a common and harmless configuration.
When bad/old metadata exists, lvm warns the user about it, and
suggests repairing it using a new metadata repair command.
Bad metadata in particular is something that users will want to
investigate and repair themselves, since it should not happen and
may indicate some other problem that needs to be fixed.
PVs with bad/old metadata are not the same as missing devices.
Missing devices will block various kinds of VG modification or
activation, but bad/old metadata will not.
Previously, lvm would attempt to repair bad/old metadata whenever
it was read. This was unnecessary since lvm does not require every
copy of the metadata to be used. It would also hide potential
problems that should be investigated by the user. It was also
dangerous in cases where the VG was on shared storage. The user
is now allowed to investigate potential problems and decide how
and when to repair them.
Repairing bad/old metadata
--------------------------
When label scan sees bad metadata in an mda, that mda is removed
from the lvmcache info->mdas list. This means that vg_read will
skip it, and not attempt to read/process it again. If it was
the only in-use mda on a PV, that PV is treated like a PV with
no mdas. It also means that vg_write will also skip the bad mda,
and not attempt to write new metadata to it. The only way to
repair bad metadata is with the metadata repair command.
When label scan sees old metadata in an mda, that mda is kept
in the lvmcache info->mdas list. This means that vg_read will
read/process it again, and likely see the same mismatch with
the other copies of the metadata. Like the label_scan, the
vg_read will simply ignore the old copy of the metadata and
use the latest copy. If the command is modifying the vg
(e.g. lvcreate), then vg_write, which writes new metadata to
every mda on info->mdas, will write the new metadata to the
mda that had the old version. If successful, this will resolve
the old metadata problem (without needing to run a metadata
repair command.)
Outdated PVs
------------
An outdated PV is a PV that has an old copy of VG metadata
that shows it is a member of the VG, but the latest copy of
the VG metadata does not include this PV. This happens if
the PV is disconnected, vgreduce --removemissing is run to
remove the PV from the VG, then the PV is reconnected.
In this case, the outdated PV needs have its outdated metadata
removed and the PV used flag needs to be cleared. This repair
will be done by the subsequent repair command. It is also done
if vgremove is run on the VG.
MISSING PVs
-----------
When a device is missing, most commands will refuse to modify
the VG. This is the simple case. More complicated is when
a command is allowed to modify the VG while it is missing a
device.
When a VG is written while a device is missing for one of it's PVs,
the VG metadata is written to disk with the MISSING flag on the PV
with the missing device. When the VG is next used, it is treated
as if the PV with the MISSING flag still has a missing device, even
if that device has reappeared.
If all LVs that were using a PV with the MISSING flag are removed
or repaired so that the MISSING PV is no longer used, then the
next time the VG metadata is written, the MISSING flag will be
dropped.
Alternative methods of clearing the MISSING flag are:
vgreduce --removemissing will remove PVs with missing devices,
or PVs with the MISSING flag where the device has reappeared.
vgextend --restoremissing will clear the MISSING flag on PVs
where the device has reappeared, allowing the VG to be used
normally. This must be done with caution since the reappeared
device may have old data that is inconsistent with data on other PVs.
Bad mda repair
--------------
The new command:
vgck --updatemetadata VG
first uses vg_write to repair old metadata, and other basic
issues mentioned above (old metadata, outdated PVs, pv_header
flags, MISSING_PV flags). It will also go further and repair
bad metadata:
. text metadata that has a bad checksum
. text metadata that is not parsable
. corrupt mda_header checksum and version fields
(To keep a clean diff, #if 0 is added around functions that
are replaced by new code. These commented functions are
removed by the following commit.)
and don't call it from inside pvcreate_each_device.
This avoids having to repeat it for users of
pvcreate_each_device (pvcreate/pvremove/vgcreate/vgextend.)
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
Save the list of PVs in /run/lvm/hints. These hints
are used to reduce scanning in a number of commands
to only the PVs on the system, or only the PVs in a
requested VG (rather than all devices on the system.)
Filters are still applied before any device reading or
the label scan, but any filter checks that want to read
the device are skipped and the device is flagged.
After bcache is populated, but before lvm looks for
devices (i.e. before label scan), the filters are
reapplied to the devices that were flagged above.
The filters will then find the data they need in
bcache.
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
Previously, a command sent lvmetad new VG metadata in vg_commit().
In vg_commit(), devices are suspended, so any memory allocation
done by the command while sending to lvmetad, or by lvmetad while
updating its cache could deadlock if memory reclaim was triggered.
Now lvmetad is updated in unlock_vg(), after devices are resumed.
The new method for updating VG metadata in lvmetad is in two phases:
1. In vg_write(), before devices are suspended, the command sends
lvmetad a short message ("set_vg_info") telling it what the new
VG seqno will be. lvmetad sees that the seqno is newer than
the seqno of its cached VG, so it sets the INVALID flag for the
cached VG. If sending the message to lvmetad fails, the command
fails before the metadata is committed and the change is not made.
If sending the message succeeds, vg_commit() is called.
2. In unlock_vg(), after devices are resumed, the command sends
lvmetad the standard vg_update message with the new metadata.
lvmetad sees that the seqno in the new metadata matches the
seqno it saved from set_vg_info, and knows it has the latest
copy, so it clears the INVALID flag for the cached VG.
If a command fails between 1 and 2 (after committing the VG on disk,
but before sending lvmetad the new metadata), the cached VG retains
the INVALID flag in lvmetad. A subsequent command will read the
cached VG from lvmetad, see the INVALID flag, ignore the cached
copy, read the VG from disk instead, update the lvmetad copy
with the latest copy from disk, (this clears the INVALID flag
in lvmetad), and use the correct VG metadata for the command.
(This INVALID mechanism already existed for use by lvmlockd.)
The lvm fullreport works per VG and as such, the vg, lv, pv, seg and
pvseg subreport is done for each VG. However, if the PV is not part of
any VG yet, we still want to display pv and pvseg subreports for these
"orphan" PVs - so enable this for lvm fullreport's process_each_vg call.
If there's parent processing handle, we don't need to create completely
new report group and status report - we'll just reuse the one already
initialized for the parent.
Currently, the situation where this matter is when doing internal report
to do the selection for processing commands where we have parent processing
handle for the command itself and processing handle for the selection
part (that is selection for non-reporting tools).
"pvcreate_each_params" was a temporary name used
to transition from the old "pvcreate_params".
Remove the old pvcreate_params struct and rename the
new pvcreate_each_params struct to pvcreate_params.
Rename various pvcreate_each_params terms to simply
pvcreate_params.
Pass the single vgname as a new process_each_vg arg
instead of setting a cmd flag to tell process_each_vg
to take only the first vgname arg from argv.
Other commands with different argv formats will be
able to use it this way.
The ONE_VGNAME_ARG was being passed and tested as
vg_read() flag but it's a cmd struct flag.
(It affects command arg processing in toollib,
not vg_read behavior. Flags related to command
processing are generally cmd struct flags, while
vg_read arg flags are generally related to vg_read
behavior.)
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.
Allowing people to add devices to a VG that has PVs missing helps
people avoid the inability to repair RAID LVs in certain cases.
For example, if a user creates a RAID 4/5/6 LV using all of the
available devices in a VG, there will be no spare devices to
repair the LV with if a device should fail. Further, because the
VG is missing a device, new devices cannot be added to allow the
repair. If 'vgreduce --removemissing' were attempted, the
"MISSING" PV could not be removed without also destroying the RAID
LV.
Allowing vgextend to operate solves the circular dependency.
When the PV is added by a vgextend operation, the sequence number is
incremented and the 'MISSING' flag is put on the PVs which are missing.
Move the free_vg() to vg.c and replace free_vg with release_vg
and make the _free_vg internal.
Patch is needed for sharing VG in vginfo cache so the release_vg function name
is a better fit here.
Fixing some const warnings - with API change in:
int vg_extend(struct volume_group *vg, int pv_count, const char *const *pv_names,
Change is needed - as lvm2api expects const behaviour here.
So vg_extend() is doing local strdup for unescaping.
skip_dev_dir return const char* from const char* vg_name.
Rest of the patch is cleanup of related warnings.
Also using dm_report_filed_string() API change to simplify
casting in _string_disp and _lvname_disp.
re-add a physical volume that has gone missing previously, due to a transient
device failure, without re-initialising it.
Signed-off-by: Petr Rockai <prockai@redhat.com>
Reviewed-by: Alasdair Kergon <agk@redhat.com>
When using vgmetadatacopies value other than "umanaged" (0), prompt
the user if the usage of --metadataignore would change the value of
vgmetadatacopies. The main 2 cases are:
1) pvchange --metadataignore
2) vgextend --metadataignore
We leave the prompt check in the tools, and do not change anything
if the user says 'n'.
Examples:
vgextend --metadataignore y vgtest /dev/loop0
Setting metadataignore will override preferred number of copies of VG vgtest metadata.
Are you sure? [y/n]: y
No physical volume label read from /dev/loop0
Physical volume "/dev/loop0" successfully created
Volume group "vgtest" successfully extended
pvchange --metadataignore y /dev/loop3
Setting metadataignore on /dev/loop3 will override preferred number of copies of VG vgtest metadata.
Are you sure? [y/n]: y
WARNING: Changing preferred number of copies of VG vgtest metadata from 3 to 2
Physical volume "/dev/loop3" changed
1 physical volume changed / 0 physical volumes not changed
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Rename fill_default_pvcreate_params to pvcreate_params_set_defaults.
Rename pvcreate_validate_restore_params to pvcreate_restore_params_validate.
Rename pvcreate_validate_params to pvcreate_params_validate.
Going forward, we would like to allow users to specify the total
number of metadatacopies in a VG rather than on a per-PV basis. In
order to facilitate that, introduce --pvmetadatacopes to replace
--metadatacopies everywhere. We still allow --metadatacopies for
pv commands, but require --pvmetadatacopies for vg commands.
Eventually we will introduce --vgmetadatacopies. Once we do that,
we should either deprecate --metadatacopies or make it a synonym based
on the command (pvmetadatacopies for pv commands, and vgmetadatacopies
for vg commands). The latter option would likely just require a simple
'strncpy' check against cmd->command->name to qualify the merge_synonym
call.
Update nightly tests to cover the pvmetadatacopies synonym.
Note that this patch is the result of an eariler review comment for
the implicit pvcreate patches. Should apply cleanly on top of the
implicit pvcreate patches (I applied after patch 10/10 in that series).
NOTE: This patch will require --pvmetadatacopies for vgconvert as
--metadatacopies is no longer accepted.
Adds implicit pvcreate support when calling vgcreate or vgextend with
device paths that are not yet PVs. This changes the behavior of vgcreate
and vgextend from failing with an error message to implicitly pvcreating.
Another refactoring for implicit pvcreate support. We need to get
the pvcreate parameters somehow to the vg_extend routine. Options
seemed to be:
1. Attach the parameters to struct volume_group. I personally
did not like this idea in most cases, though one could make an
agrument why it might be ok at least for some of the parameters
(e.g. metadatacopies).
2. Pass them in to the extend routine. This second route seemed
to be the best approach given the constraints.
Future patches will parse the command line and fill in the actual
values for the pvcreate_single call.
Should be no functional change.
Full changes
- Fix vgextend error path when lock_vol(VG_ORPHANS) fails
- Move lock_vol(VG_ORPHANS) before archive(vg) - safe & simpler error paths
- Remove legacy comment/code that no longer applies
Found in review - Milan Broz <mbroz@redhat.com>
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
We must hold the VG_ORPHAN lock until we commit to disk. Otherwise,
we risk a race condition on vgcreate / vgextend. Reverts the following
commit:
commit 72a41480ba
Author: Dave Wysochanski <dwysocha@redhat.com>
Date: Fri Jul 10 20:09:21 2009 +0000
Move orphan lock obtain/release inside vg_extend().
With this change we now have vgcreate/vgextend liblvm functions.
Note that this changes the lock order of the following functions as the
orphan lock is now obtained first. With our policy of non-blocking
second locks, this should not be a problem.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Move the check for the RESIZEABLE flag inside the vg_extend function.
When we consolidated the vg locking, reading, and status flag checking,
we tied the check for the RESIZEABLE flag to the vg_read() call. The problem
with this is you cannot know what other APIs the application my or may not
call after a vg_read() call. Thus the READ_REQUIRE_RESIZEABLE flag is not
really ideal - ideally we should be checking for this flag on a specific
operation, not inside the vg_read() call. This patch moves one check inside
the library.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Alasdair G Kergon <agk@redhat.com>
With this change we now have vgcreate/vgextend liblvm functions.
Note that this changes the lock order of the following functions as the
orphan lock is now obtained first. With our policy of non-blocking
second locks, this should not be a problem.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Remove unneeded LOCK_NONBLOCKING from vg_read() API and tools that
use it. We no longer need this flag anywhere since we now automatically
set LCK_NONBLOCK inside lock_vol() if vgs_locked().
For further details, see:
commit d52b3fd3fe
Author: Dave Wysochanski <dwysocha@redhat.com>
Date: Wed May 13 13:02:52 2009 +0000
Remove NON_BLOCKING lock flag from tools and set a policy to auto-set.
As a simplification to the tools and further liblvm, this patch pushes
the setting of NON_BLOCKING lock flag inside the lock_vol() call.
The policy we set is if any existing VGs are currently locked, we
set the NON_BLOCKING flag.
At some point it may make sense to add this flag back if we get an
RFE from a liblvm user, but for now let's keep it as simple as
possible.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Fix vg_read() error paths to properly release upon vg_read_error().
Note that in the iterator paths (process_each_*()), we release
inside the iterator so no individual cleanup is needed. However there
are a number of other places we missed the cleanup. Proper cleanup
when vg_read_error() is true should be calling vg_release(vg), since
there should be no locks held if we get an error (except in certain
special cases, which IMO we should work to remove from the code).
Unfortunately the testsuite is unable to detect these types of memory
leaks. Most of them can be easily seen if you try an operation
(e.g. lvcreate) with a volume group that does not exist. Error
message looks like this:
Volume group "vg2" not found
You have a memory leak (not released memory pool):
[0x1975eb8]
You have a memory leak (not released memory pool):
[0x1975eb8]
Author: Dave Wysochanski <dwysocha@redhat.com>
Sun May 3 11:40:51 CEST 2009 Petr Rockai <me@mornfall.net>
* Convert the straight instances of vg_lock_and_read to new vg_read(_for_update).
Rebased 6/26/09 by Dave W.