IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In 2.02.99, _init_tags() inadvertently began to ignore the
dm_config_tree struct passed to it. "tags" sections are not
merged together, so the "tags" section in the main config file was
being processed repeatedly and other "tags" sections were ignored.
Before, we refreshed filters and we did full rescan of devices if
we passed through wiping (wipe_known_signatures fn call). However,
this fn returns success even if no signatures were found and so
nothing was wiped. In this case, it's not necessary to do the
filter refresh/rescan of devices as nothing changed clearly.
This patch exports number of wiped signatures from all the
wiping functions below. The caller (_pvcreate_check) then checks
whether any wiping was done at all and if not, no refresh/rescan
is done, saving some time and resources.
pvcreate code path executes signature wiping if there are any signatures
found on device to prepare the device for PV. When the signature is wiped,
the WATCH udev rule triggers the event which then updates udev database
with fresh info, clearing the old record about previous signature.
However, when we're using udev db as dev-ext source, we'd need to wait
for this WATCH-triggered event. But we can't synchronize against such
events (at least not at this moment). Without this sync, if the code
continues, the device could still be marked as containing the old
signature if reading udev db. This may end up even with the device
to be still filtered, though the signature is already wiped.
This problem is then exposed as (an example with md components):
$ mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sda /dev/sdb --run
$ mdadm -S /dev/md0
$ pvcreate -y /dev/sda
Wiping linux_raid_member signature on /dev/sda.
/dev/sda: Couldn't find device. Check your filters?
$ echo $?
5
So we need to temporarily switch off "udev" dev-ext source here
in this part of pvcreate code until we find a way how to sync
with WATCH events.
(This problem does not occur with signature wiping which we do
on newly created LVs since we already handle this properly with
our udev flags - the LV_NOSCAN/LV_TEMPORARY flag. But we can't use
this technique for non-dm devices to keep WATCH rule under control.)
Invalid devices no longer included in the counters printed at the end.
May now need to use --ignoreskippedcluster if relying upon exit status.
If more than one change is requested per-PV, attempt to perform them
all. Note that different arguments still handle exit status
differently.
When lvmetad is used and at the same time we're getting list of all
PV-capable devices, we can't use cmd->filter (which is used to filter
out lvmetad responses - so we're sure that the devices are PVs already).
To get the list of PV-capable devices, we're bypassing lvmetad (since
lvmetad only caches PVs, not all the other devices which are not PVs).
For this reason, we have to use the "full_filter" filter chain (just
like we do when we're running without lvmetad).
Example scenario:
- sdo and sdp components of MD device md0
- sdq, sdr and sds components of mpatha multipath device
- mpatha multipath device partitioned
- vda device partitioned
=> sdo,sdp,sdr,sds, mpatha and vda should be filtered!
$ lsblk -o NAME,TYPE
NAME TYPE
sdn disk
sdo disk
`-md0 raid0
sdp disk
`-md0 raid0
sdq disk
`-mpatha mpath
`-mpatha1 part
sdr disk
`-mpatha mpath
`-mpatha1 part
sds disk
`-mpatha mpath
`-mpatha1 part
vda disk
|-vda1 part
`-vda2 part
|-fedora-swap lvm
`-fedora-root lvm
Before this patch:
==================
use_lvmetad=0 (correct behaviour!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
use_lvmetad=1 (incorrect behaviour - sdo,sdp,sdq,sdr,sds and mpatha not filtered!)
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/sdo --- 0 0
/dev/sdp --- 0 0
/dev/sdq --- 0 0
/dev/sdr --- 0 0
/dev/sds --- 0 0
/dev/vda --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
With this patch applied:
========================
use_lvmetad=1
$ pvs -a
PV VG Fmt Attr PSize PFree
/dev/fedora/root --- 0 0
/dev/fedora/swap --- 0 0
/dev/mapper/mpatha1 --- 0 0
/dev/md0 --- 0 0
/dev/sdn --- 0 0
/dev/vda1 --- 0 0
/dev/vda2 fedora lvm2 a-- 9.51g 0
This makes a difference when using selection criteria based on
these fields - if those fields are defined as DM_REPORT_FIELD_TYPE_SIZE
(in contrast to DM_REPORT_FIELD_TYPE_NUMBER), units are also
recognize in selection clause.
For example:
$ lvs -o+seg_start vg1/lv2
LV VG Attr LSize Start
lv2 vg1 -wi-a----- 12.00m 0
lv2 vg1 -wi-a----- 12.00m 8.00m
Before this patch:
$ lvs -o+seg_start --select 'seg_start=8m'
Found size unit specifier but numeric value expected for selection field seg_start.
Selection syntax error at 'seg_start=8m'.
Use 'help' for selection to get more help.
With this patch applied:
$lvs -o+seg_start --select 'seg_start=8m'
LV VG Attr LSize Start
lv2 vg1 -wi-a----- 12.00m 8.00m
(the same applies for ba_start and vg_free fields)
We already allowed -S|--select with {vg,lv,pv}display -C (which
was then equal to {vg,lv,pv}s command. Since we support selection
in toolib now, we can support -S also without using -C in *display
commands now.
We have 3 input report types:
- LVS (representing "_select_match_lv")
- VGS (representing "_select_match_vg")
- PVS (representing "_select_match_pv")
The input report type is saved in struct selection_handle's "orig_report_type"
variable.
However, users can use any combination of fields of different report types in
selection criteria - the resulting report type can thus differ. The struct
selection_handle's "report_type" variable stores this resulting report type.
The resulting report_type can end up as one of:
- LVS
- VGS
- PVS
- SEGS
- PVSEGS
This patch adds logic to report_for_selection based on (sensible) combination
of orig_report_type and report_type and calls appropriate reporting functions
or iterates over multiple items that need reporting to determine the selection
result.
Once LVM_COMMAND_PROFILE environment variable is specified, the profile
referenced is used just like it was specified using "<lvm command> --commandprofile".
If both --commandprofile cmd line option and LVM_COMMAND_PROFILE env
var is used, the --commandprofile cmd line option gets preference.
all sockets opened by a daemon or handed over by systemd
have to have CLOEXEC flag set. Otherwise we get nasty
warnings about leaking descriptors in processes spawned by
daemon.
for_each_sub_lv() now scans in depth also pools, however for
rename we actually do want to skip pools.
So add a new for_each_sub_lv_except_pools() to be used by rename,
every other user of for_each_sub_lv() scans every sub LV with pools
included.
This is i.e. necessary for properly working preload of pools
that are using raid arrays.
This is a regression from v115 where some of the fields/properties
were converted to using the common "struct lvinfo" and
"struct lv_seg_status" so we don't need to issue info and status
ioctl several times per one reported line. Not all fields are
converted yet, but one that *is* converted is the lv_attr field
with the lv_attr_dup counterpart used in lvm_lv_get_attr lvm2app fn.
These changes were introduced with e34b004422
and later - this patch introduced the "info_ok" field in the
lv_with_info_and_seg_status structure which encapsulates the lvinfo
and lv_seg_status struct.
For the lv_attr_dup, the lv_attr_dup code missed the
assignment for the "info_ok" flag which saves the result of the
lv_info_with_seg_status call. Hence such info was marked
as unusable - unknown and it was returned as such via lvm_lv_get_attr
lvm2app fn.
When cache_mode is undefined, the read of metadata will miss to
set a bit with mode and fails to process metadata on internal
error:
Internal error: LV vg/lvol1 has uknown feature flags 0.
Fix it by setting it to writethrough mode.
When repairing thin pool or swapping thin pool metadata,
preserve chunk_size property and avoid to be automatically changed
later in the code to better match thin pool metadata size.
When raid leg is extracted, now the preload code handles this state
correctly and put proper new table entry into dm tree,
so the activation of extracted leg and removed metadata works
after commit.
When raid is being splitted, extracted leg & metadata
is still floating in the table - and thus we need to
detect this case and properly preload their matching
table so consequent activation of extracted LVs properly
renames (and FREES) existing raid images, so ongoing
image name shifting will work.
For example, with dmeventd/executable set to "" which is not allowed for
this setting, the config validation now ends up with:
$ lvm dumpconfig --validate
Configuration setting "dmeventd/executable" invalid. It cannot be set to an empty value.
LVM configuration invalid.
This check for empty values for string config settings was not
done before (we only checked empty arrays, but not scalar strings).
Rename original lv_error_when_full field to lv_when_full and also
convert it from binary field to string field displaying three
possible values: "error", "queueu" or "" (blank for undefined).
$ lvs vg/pool vg/pool1 vg/linear_lv -o+lv_when_full
LV VG Attr LSize Data% Meta% WhenFull
linear_lv vg -wi-a----- 4.00m
pool vg twi-aotz-- 4.00m 0.00 0.98 queue
pool1 vg twi-a-tz-- 4.00m 0.00 0.88 error
For -S|--select these synonyms are recognized:
"error" -> "error when full", "error if no space"
"queue" -> "queue when full", "queue if no space"
"" -> "undefined"
Support error_if_no_space feature for thin pools.
Report more info about thinpool status:
(out_of_data (D), metadata_read_only (M), failed (F) also as health
attribute.)
An 'lvconvert --repair $RAID_LV" to replace a failed leg of a multi-segment
RAID10/4/5/6 logical volume can lead to allocation of (parts of) the replacement
image component pair on the physical volume of another image component
(e.g. image 0 allocated on the same PV as image 1 silently impeding resilience).
Patch fixes this severe resilince issue by prohibiting allocation on PVs
already holding other legs of the RAID set. It allows to allocate free space
on any operational PV already holding parts of the image component pair.
Normally, if there are partitions defined on top of device-mapper
device, there should be a device-mapper device created for each
partiton on top of the old one and once the underlying DM device
is used by another devices (partition mappings in this case),
it can't be used as a PV anymore.
However, sometimes, it may happen the partition mappings are
missing - either the partitioning tool is not creating them if
it does not contain full support for device-mapper devices or
the mappings were removed.
Better safe than sorry - check for partition header on DM devs
and filter them out as unsuitable for PVs in case the check is
positive. Whatever the user is doing, let's do our best to prevent
unwanted corruption (...by running pvcreate on top of such device
that would corrupt the partition header).
If pvscan is run with device path instead of major:minor pair and this
device still exists in the system and the device is not visible anymore
(due to a filter that is applied), notify lvmetad properly about this.
This makes it more consistent with respect to existing pvscan with
major:minor which already notifies lvmetad about device that is gone
due to filters.
However, if the device is not in the system anymore, we're not able
to translate the original device path into major:minor pair which
lvmetad needs for its action (lvmetad_pv_gone fn). So in this case,
we still need to use major:minor pair only, not device path. But at
least make "pvscan --cache DevicePath" as near as possible to "pvscan
--cahce <major>:<minor>" functionality.
Also add a note to pvscan man page about this difference when using
pvscan --cache with DevicePath and major:minor pair.
No need to use awk now to get appropriate VGs/LVs, use LVM's
own --select - it's quicker, it removes a need for external
dependency on awk and it's also more readable.
When creating/activating clustered mirrors, we should have cmirrord
available and running. If it's not, we ended up with rather cryptic
errors like:
$ lvcreate -l1 -m1 --type mirror vg
Error locking on node 1: device-mapper: reload ioctl on failed: Invalid argument
Failed to activate new LV.
$ vgchange -ay vg
Error locking on node node 1: device-mapper: reload ioctl on failed: Invalid argument
This patch adds check for cmirror availability and it errors out
properly, also giving a more precise error messge so users are able
to identify the source of the problem easily:
$ lvcreate -l1 -m1 --type mirror vg
Shared cluster mirrors are not available.
$ vgchange -ay vg
Error locking on node 1: Shared cluster mirrors are not available.
Exclusively activated cluster mirror LVs are OK even without cmirrord:
$ vgchange -aey vg
1 logical volume(s) in volume group "vg" now active
The {pv,vg,lv}display *do* use reporting in case "-C|--columns" is used.
The man page was correct, the recognition for the --binary was missing
in the code though!
All the LVM commands are run in mode without lvmetad use (since lvmetad
can't handle duplicates). When we're finished with vgimportclone, we
need to notify lvmetad about changes.
Before this patch (/dev/sda and /dev/sdb contains a copy VG called "vg"):
$ vgimportclone --basevgname vg_snap /dev/sdb
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
WARNING: Activation disabled. No device-mapper interaction will be attempted.
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
Physical volume "/tmp/snap.zcJ8LCmj/vgimport0" changed 1 physical volume changed / 0 physical volumes not changed
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
WARNING: Activation disabled. No device-mapper interaction will be attempted.
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
Volume group "vg" successfully changed
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
Volume group "vg" successfully renamed to "vg_snap"
Reading all physical volumes. This may take a while...
Found volume group "vg" using metadata type lvm2
Found volume group "fedora" using metadata type lvm2
$ vgs
VG #PV #LV #SN Attr VSize VFree
fedora 1 2 0 wz--n- 9.50g 0
vg 1 1 0 wz--n- 124.00m 120.00m
(...lvmetad doesn't see the new "vg_snap"!)
With this patch applied:
$ vgimportclone --basevgname vg_snap /dev/sdb
...
WARNING: lvmetad is running but disabled. Restart lvmetad before enabling it!
Volume group "vg" successfully renamed to "vg_snap"
Notifying lvmetad about changes since it was disabled temporarily.
Reading all physical volumes. This may take a while...
Found volume group "vg_snap" using metadata type lvm2
Found volume group "fedora" using metadata type lvm2
Found volume group "vg" using metadata type lvm2
$ vgs
VG #PV #LV #SN Attr VSize VFree
fedora 1 2 0 wz--n- 9.50g 0
vg 1 1 0 wz--n- 124.00m 120.00m
vg_snap 1 1 0 wz--n- 124.00m 120.00m
The "restart lvmetad before enabling it" message is a bit misleading
here - we should probably suppress this one, but we can't suppress
warning messages selectively at the moment and we don't want to lose
other warning/error messages printed...
With current dumpconfig, we can generate lvm.conf easily - we can merge
current lvm.conf with the config given on cmd line:
lvm dumpconfig --mergedconfig --config "..."
This is a bit simpler than using awk and it also avoids problems when some of
the configuration is missing in existing lvm.conf file and hardcoded defaults
are used instead. The dumpconfig handles this transparently.
Under certain circumstances, the selection code can segfault:
$ vgs --select 'pv_name=~/dev/sda' --unbuffered vg0
VG #PV #LV #SN Attr VSize VFree
vg0 6 3 0 wz--n- 744.00m 588.00m
Segmentation fault (core dumped)
The problem here is the use of --ubuffered together with regex used in
selection criteria. If the report output is not buffered, each row is
discarded as soon as it is reported. The bug is in the use of report
handle's memory - in the example above, what happens is:
1) report handle is initialized together with its memory pool
2) selection tree is initialized from selection criteria string
(using the report handle's memory pool!)
2a) this also means the regex is initialized from report handle's mem pool
3) the object (row) is reported
3a) any memory needed for output is intialized out of report handle's mem pool
3b) selection criteria matching is executed - if the regex is checked the
very first time (for the very first row reported), some more memory
allocation happens as regex allocates internal structures "on-demand",
it's allocating from report handle's mem pool (see also step 2a)
4) the report output is executed
5) the object (row) is discarded, meaning discarding all the mem pool
memory used since step 3.
Now, with step 5) we have discarded the regex internal structures from step 3b.
When we execute reporting for another object (row), we're using the same
selection criteria (step 3b), but tihs is second time we're using the regex
and as such, it's already initialized completely. But the regex is missing the
internal structures now as they got discarded in step 5) from previous
object (row) reporting (because we're using "unbuffered" reporting).
To resolve this issue and to prevent any similar future issues where each
object/row memory is discarded after output (the unbuffered reporting) while
selection tree is global for all the object/rows, use separate memory pool
for report's selection.
This patch replaces "struct selection_node *selection_root" in struct
dm_report with new struct selection which contains both "selection_root"
and "mem" for separate mem pool used for selection.
We can change struct dm_report this way as it is not exposed via libdevmapper.
(This patch will have even more meaning for upcoming patches where selection
is used even for non-reporting commands where "internal" reporting and
selection criteria matching happens and where the internal reporting is
not buffered.)
Fix incorrect test in configure which sets --enable-udev-systemd-background-jobs
automatically if proper systemd version is available.
The UDEV_SYSTEMD_BACKGROUND_JOBS variable was not properly set to "yes" in
case systemd is available and we had "maybe" for this variable before.
When we split leg from raid - we take a proper new lock for a new LV.
However for now activation checks only 'existince' of device UUID,
but it's not validating device has a proper name.
As a quick fix call suspend()/resume() to rename after split mirror.
Free (and clear) h.protocol string on daemon_open() error paths
so it's OK for caller to skip calling daemon_close() if returned
h.socket_fd is -1.
Close h.socket_fd in daemon_close() to avoid possible leak.
https://bugzilla.redhat.com/1164234
When chunk size needs to be estimated, the code missed to round
to proper 64kb boundaries (or power of 2 for older thin pool driver).
So for some data and metadata size (i.e. 10GB and 4MB) it resulted
in incorrect chunk size (not being a multiple of 64KB)
Fix it by adding proper rounding and also use 1 routine for 2 places
where the same calculation is made.
Fix also incorrect printed warning that has used 'ffs()'
(which returns first 'least significant' bit in word)
and it was not really giving any useful size info and replace it
with properly estimated chunk size.
Fix regression introduced with a2c1024f6a
_setup_task(mknodes ? name : NULL...
has been replaced with:
_setup_task(type != MKNODES ? name : NULL....
Use '=='
Commit d2c116058e introduced regression
with CLVMD_PATH.
+ CLVMD_PATH="$clvmd_prefix/sbin/clvmd"
test "$prefix" != NONE && clvmd_prefix=$prefix
It has set CLVMD_PATH before clvmd_prefix got its final value.
Move it one line below.
systemd-run is available in systemd>=205. Also, this fix prevents
systemd-specific udev rules in 69-dm-lvm-metad.rules to appear in
case systemd environment is not available - make configure to check
this automatically and use these systemd specific rules only if it
is applicable.
Rework ignore_vg() API so it properly handles
multiple kind of vg_read_error() states.
Skip processing only otherwise valid VG.
Always return ECMD_FAILED when break is detected.
Check sigint_caught() in front of dm iterator loop.
Add stack for _process failing ret codes.
Failed recovery provides different (NULL) VG then FAILED_INCONSISTENT.
Mark it with different failure bit - since FAILED_INCONSISTENT is
supposed to contain something 'usable' (thought inconsistent).
More efficient spare volume creation. Save 1 extra commit
and properly activate this volume according to our cluster
activation rules (using lv_active_change() for this).
Since we 'layer' for cache origin which and we support dropping
cache layer - we need to restore origin name in case
the origin LV is more complex target - i.e. raid.
Drop _corig from name
Cleanup and rename parent -> parent_lv.
When deactivating origin, we may have possibly left table in broken state,
where origin is not active, but snapshot volume is still present.
Let's ensure deactivation of origin detects also all associated
snapshots are inactive - otherwise do not skip deactivation.
(so i.e. 'vgchange -an' would detect errors)
When responding to DM_EVENT_CMD_GET_REGISTERED_DEVICE no longer
ignore threads that have already been unregistered but which
are still present.
This means the caller can unregister a device and poll dmeventd
to ensure the monitoring thread has gone away before removing
the device. If a device was registered and unregistered in quick
succession and then removed, WAITEVENT could run in parallel with
the REMOVE.
Threads are moved to the _thread_registry_unused list when they
are unregistered.
Call check_new_thin_pool() to detect in-use thin-pool.
Save extra reactivation of thin-pool when thin pool is not active.
(it's now a bit more expensive to invoke thin_check for new pools.)
For new pools:
We now active locally exclusively thin-pool as 'public' LV.
Validate transaction_id is till 0.
Deactive.
Prepare create message for thin-pool and exclusively active pool.
Active new thin LV.
And deactivate thin pool if it used to be inactive.
Show some stats with 'lvs'
Display same info for active cache volume and cache-pool.
data% - #used cache blocks/#total cache blocks
meta% - #used metadata blocks/#total metadata blocks
copy% - #dirty/#used cache blocks
TODO: maybe there is a better mapping
- should be seen as first-try-and-see.
New size_mb_arg_with_percent is able to read size_mb_arg
but also it's able to read % values.
Percent parsing is share with int_arg_with_sign_and_percent.
If root has locales with different decimal point then '.'
(i.e. Czech with ',') lets be tolerant and retry with
"C" locales in the case '.' is found during parse of number.
Locales are then restored back.
Support compile type configurable defaults for creation
of sparse volumes.
By default now create 'thin-pools' for sparse volumes.
Use the global/sparse_segtype_default to switch back to old
snapshots if needed.
Apply the same compile logic for newly introduces mirror/raid1 options.
Use segment flags to avoid zeroing of cache, cache pool
snapshot and thin pool segments.
We never want to zero these segment types.
Note:
Snapshot COW and Cache origin are created as stripes
thus are then properly zeroed.
Let the finaly state of zero & wipe_signature to be
resolved later together with all the types.
Don't play with zero assigment and segtype flag
(i.e. thin-pool -Z has different meaning).
Check if the passed options do allow requested zeroing/wiping.
lvcreate without -Z or -W will fallback to warning if the device
cannot be zeroed, however if user requested them explicitely
it will give user error.
Refactor lvcreate code.
Prefer to use arg_outside_list_is_set() so we get automatic 'white-list'
validation of supported options with different segment types.
Drop used lp->cache, lp->cache and use seg_is_cache(), seg_is_thin()
Draw clear border where is the last moment we could change create
segment type.
When segment type is given with --type - do not allow it to be changed
later.
Put together tests related to individual segment types.
Finish cache conversion at proper part of lv_manip code after
the vg_metadata are written - so we could correcly clean-up created
stripe LV for cache volume.
We want to print smarter warning message only when
the zeroing was not provided on the first zeroable segment
of newly created LV.
Put warning within _should_wipe_lv function to avoid reevaluation
of same conditions twice.
Hide creation of temporary LVs and print them only in verbose mode.
e.g. hides confusing message about creation of _pmspare
device during creation of pool.
Ask for lock the proper LV.
Use the top-most LV to query for locally exclusive lock.
The rest of operations are then using 'lv_info()'
TODO:
Check all devices are reloaded from proper level.
In general any query on lv_is_active is supposed to be running
ona lv_lock_holder() volume.
Instead of segtype->ops->name() introduce lvseg_name().
This also allows us to leave name() function 'empty' for default
return of segtype->name.
TODO: add functions for rest of ops->
There was a bug in value and their synonym definition for these two fields
causing selections on these fields to not work correctly - nothing matched
against vg/lv_permissions fields even if selection criteria should have
matched.
Scenario:
$ lvs -o name,lv_permissions vg
LV LPerms
lvol0 read-only
lvol1 writeable
Before this patch:
$ lvs -o name,lv_permissions vg -S 'permissions=read-only'
(blank)
$ lvs -o name,lv_permissions vg -S 'permissions=writeable
(blank)
With this patch applied:
$ lvs -o name,lv_permissions vg -S 'permissions=read-only'
LV LPerms
lvol0 read-only
$ lvs -o name,lv_permissions vg -S 'permissions=writeable'
LV LPerms
lvol1 writeable
Also synonyms match correctly now:
$ lvs -o name,lv_permissions vg -S 'permissions=rw'
LV LPerms
lvol1 writeable
Fix lvm_split that is called when cmd line string is separated into
argv fields to recognize quote chars ('\'" and '"') properly and
when these quotes are used, consider the text within quotes as one
argument, do not separate it based on space characters inside.
The lvm_split is used during processing lvm shell command line or
when calling lvm commands through cmdlib (e.g. dmeventd plugins).
For example, the lvm shell scenario:
Before this patch:
$lvm
lvm> lvs --config 'global{ suffix=0 }'
Parse error at byte 9 (line 1): unexpected token
Failed to set overridden configuration entries.
With this patch applied:
$lvm
lvm> lvs --config 'global{ suffix=0 }'
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
root fedora -wi-ao---- 9.00g
swap fedora -wi-ao---- 512.00m
(Exactly the same problem is hit when calling LVM commands with
quoted arguments via lvm2cmd lib in dmeventd plugins.)
Bug https://bugzilla.redhat.com/show_bug.cgi?id=843587 is handled better
now - the hang does not occur anymore. There are still error messages
issued though during shutdown if someone stops lvm2-lvmetad.service
manually that lvm2-monitor.service depends on (even during shutdown).
These errors are correct though and will point to incorrect
configuration (still having use_lvmetad=1 in lvm.conf and stopping
lvm2-lvmetad.service manually).
The workaround to prevent the hang is not needed now. So the
'--config "global{use_lvmetad=0}"' is now removed from the
lvm2-monitor.service's ExecStop line.
Introduce pool function for validation of chunk size.
It's good idea to be able to reject invalid chunk size
when entered on command line before we open VG.
Move code to better locations.
Improve test and remove invalid ones
(i.e. no reason to require cache size to be >= then origin).
Correctly comment where the code is doing actual conversion
of other existing volume - we do already a similar thing with
external origins.
Lots of new command line options and combinations is now supported.
Hopefully older syntax still works as well.
lvcreate --cache --cachepool vg/pool -l1
lvcreate --type cache --cachepool vg/pool -l1
lvcreate --type cache-pool vg/pool -l1
lvcreate --type cache-pool --name pool vg -l1
... and many many more ...
Since _pmspare is internal volume move it to
lv_remove_single - so it's automatically removed with
last remove thin-pool.
lv_remove_with_dependencies() is not always used for pool removal.
--splitcache
Splits only cached LV (also pool could be specified).
Detaches cachepool from cached LV.
--split
Should be univerzal command to split various complex targets.
At this moment it knows cache.
--uncache
Opposite command to --cache. Detaches and DELETES cachepool for
cached LV.
Note: we support thin pool cached metadata device for uncaching.
Also use may specify wither cached LV or association cachepool device
to request split of cache.
Over the time lvcreate code has accumulated various hacks.
So try to move that code in right places.
Detect all types early in _lvcreate_params() so functions like
_read_size_params() do not need to change volume types.
Also ultimately respect give volume --type, that its shortcut
(-T, H, -m, -s) and after that options which do type estimation.
(i.e. --cachepool, --thinpool)
Avoid repeative tests - if we know all types are decode at once
place we can 'optimize' number of validations.
Split VG argument collection from processing.
This allows the two different loops through VGs to
be replaced by a single loop.
Replace unused struct cmd_vg and cmd_vg_read() replicator
code with struct vg and vg_read() directly.
[Committed by agk with cosmetic changes and tweaks.]
We use adjusted_mirror_region_size() in two different contexts.
Either on command line -
here we do want to inform user about reduction of size.
Or in pvmove activation context -
here we should only use 'verbose' info.
When requesting to reload an LV imrove this API to
automatically reload its lock holding LV as in cluster
only top-level LVs are addressable with lock.
When vg_ondisk is NULL we do not need to search
through the whole VG to find out the same LV.
NOTE: as of now - VG locking is not enabled as some code parts
are breaking memory locking rules (lvm2app).
Once we enforce VG locking for read-only commands the effect
will be much better for larger VGs.
Move common code for reading and processing
of --persistent arguments for lvcreate and lvchange
into lvmcmdline.
Reuse validate_major_minor() routine for validation.
Don't blindly activate LVs after change in cluster
and instead only local reactivation is supported.
(we have now many limited targets now).
Dropping 'sigint_caught()' handling, since
prompt() is resolving this case itself.
If we want to support conversion of VG to clustered type,
we currently need to relock active LV to get proper DLM lock.
So add extra loop after change of VG clustered attribute
to exlusively activate all active top level LVs.
When doing change -cy -> -cn we should validate LVs are not
active on other cluster nodes - we could be sure about this only
when with local exclusive activation - for other types
we require user to deactivate volumes first.
As a workaround for this limitation there is always
locking_type = 0 which amongs other skip the detection
of active LVs.
FIXME:
clvmd should handle looks for cluster locking type all the time.
Failure to copy the 'feature_flags' lvconvert_param to the matching
lv_segment field meant that when a user specified the cachemode argument,
the request was not honored.
While we could probably reacquire some type of lock when
going from non-clustered to clustered vg, we don't have any
single road back to drop the lock and keep LV active.
For now keep it safe and prohibit conversion when LV
is active in the VG.
Try to enforce consistent macro usage along these lines:
lv_is_mirror - mirror that uses the original dm-raid1 implementation
(segment type "mirror")
lv_is_mirror_type - also includes internal mirror image and log LVs
lv_is_raid - raid volume that uses the new dm-raid implementation
(segment type "raid")
lv_is_raid_type - also includes internal raid image / log / metadata LVs
lv_is_mirrored - LV is mirrored using either kernel implementation
(excludes non-mirror modes like raid5 etc.)
lv_is_pvmove - internal pvmove volume
Use lv_is_* macros throughout the code base, introducing
lv_is_pvmove, lv_is_locked, lv_is_converting and lv_is_merging.
lv_is_mirror_type no longer includes pvmove.
Fix rename operation for snapshot (cow) LV.
Only the snapshot's origin has the lock and by mistake suspend
and resume has been called for the snapshot LV.
This further made volumes unusable in cluster.
So instead of suspend and resuming list of LVs,
we need to just suspend and resume origin.
As the sequence write/suspend/commit/resume
is widely used in lvm2 code base - move it to
new lv_update_and_reload function.
Fixing problem, when user sets volume_list and excludes thin pools
from activation. In this case pool return 'success' for skipped activation.
We need to really check the volume it is actually active to properly
to remove queued pool messages. Otherwise the lvm2 and kernel
metadata started to go async since lvm2 believed, messages were submitted.
Add also better check for threshold when create a new thin volume.
In this case we require local activation of thin pool so we are able
to check pool fullness.
The 'lv_type' field name was a bit misleading. Better one is 'lv_role'
since this fields describes what's the actual use of the LV currently -
its 'role'.
Sort out the lvresize calculation code to handle size changes
specified as physical extents as well as logical extents
and to process mirror resizing and raid extensions correctly.
The 'approx alloc' option was masking the underlying problem.
When testing conversion sanity, we checked lv->status & MIRRORED
which encompasses both old mirrors and raid1 mirrors. But we need to
ban only the old mirrors here hence allow raid1 mirrors.
The maximum stripe size is equal to the volume group PE size. If that
size falls below the STRIPE_SIZE_MIN, the creation of RAID 4/5/6 volumes
becomes impossible. (The kernel will fail to load a RAID 4/5/6 mapping
table with a stripe size less than STRIPE_SIZE_MIN.) So, we report an
error if it is attempted.
This is very rare because reducing the PE size down that far limits the
size of the PV below that of modern devices.
The lv_layout and lv_type fields together help with LV identification.
We can do basic identification using the lv_attr field which provides
very condensed view. In contrast to that, the new lv_layout and lv_type
fields provide more detialed information on exact layout and type used
for LVs.
For top-level LVs which are pure types not combined with any
other LV types, the lv_layout value is equal to lv_type value.
For non-top-level LVs which may be combined with other types,
the lv_layout describes the underlying layout used, while the
lv_type describes the use/type/usage of the LV.
These two new fields are both string lists so selection (-S/--select)
criteria can be defined using the list operators easily:
[] for strict matching
{} for subset matching.
For example, let's consider this:
$ lvs -a -o name,vg_name,lv_attr,layout,type
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
pool vg twi-a-tz-- pool,thin pool,thin
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tdata_rimage_0] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_1] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_2] vg iwi-aor--- linear image,raid
[pool_tdata_rimage_3] vg iwi-aor--- linear image,raid
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rimage_0] vg iwi-aor--- linear image,raid
[pool_tmeta_rimage_1] vg iwi-aor--- linear image,raid
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
thin_vol1 vg Vwi-a-tz-- thin thin
thin_vol2 vg Vwi-a-tz-- thin multiple,origin,thin
Which is a situation with thin pool, thin volumes and thin snapshots.
We can see internal 'pool_tdata' volume that makes up thin pool has
actually a level10 raid layout and the internal 'pool_tmeta' has
level1 raid layout. Also, we can see that 'thin_snap1' and 'thin_snap2'
are both thin snapshots while 'thin_vol1' is thin origin (having
multiple snapshots).
Such reporting scheme provides much better base for selection criteria
in addition to providing more detailed information, for example:
$ lvs -a -o name,vg_name,lv_attr,layout,type -S 'type=metadata'
LV VG Attr Layout Type
[lvol1_pmspare] vg ewi------- linear metadata,pool,spare
[pool_tdata_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_1] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_2] vg ewi-aor--- linear metadata,raid
[pool_tdata_rmeta_3] vg ewi-aor--- linear metadata,raid
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
[pool_tmeta_rmeta_0] vg ewi-aor--- linear metadata,raid
[pool_tmeta_rmeta_1] vg ewi-aor--- linear metadata,raid
(selected all LVs which are related to metadata of any type)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={metadata,thin}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs which hold metadata related to thin)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'type={thin,snapshot}'
LV VG Attr Layout Type
thin_snap1 vg Vwi---tz-k thin snapshot,thin
thin_snap2 vg Vwi---tz-k thin snapshot,thin
(selected all LVs which are thin snapshots)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout=raid'
LV VG Attr Layout Type
[pool_tdata] vg rwi-aor--- level10,raid data,pool,thin
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid layout, any raid layout)
lvs -a -o name,vg_name,lv_attr,layout,type -S 'layout={raid,level1}'
LV VG Attr Layout Type
[pool_tmeta] vg ewi-aor--- level1,raid metadata,pool,thin
(selected all LVs with raid level1 layout exactly)
And so on...
_pvcreate_check() has two missing requirements:
After refreshing filters there must be a rescan.
(Otherwise the persistent filter may remain empty.)
After wiping a signature, the filters must be refreshed.
(A device that was previously excluded by the filter due to
its signature might now need to be included.)
If several devices are added at once, the repeated scanning isn't
strictly needed, but we can address that later as part of the command
processing restructuring (by grouping the devices).
Replace the new pvcreate code added by commit
54685c20fc "filters: fix regression caused
by commit e80884cd080cad7e10be4588e3493b9000649426"
with this change to _pvcreate_check().
The filter refresh problem dates back to commit
acb4b5e4de "Fix pvcreate device check."
If using persistent filter and we're refreshing filters (just like we
do for pvcreate now after commit 54685c20fc),
we can't rely on getting the primary device of the partition from the cache
as such device could be already filtered by persistent filter and we get
a device cache lookup failure for such device.
For example:
$ lvm dumpconfig --type diff
devices {
obtain_device_list_from_udev=0
}
$lsblk /dev/sda
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 128M 0 disk
`-sda1 8:1 0 127M 0 part
$cat /etc/lvm/cache/.cache | grep sda
"/dev/sda1",
$pvcreate /dev/sda1
dev_is_mpath: failed to get device for 8:1
Physical volume "/dev/sda1" successfully created
The problematic part of the code called dev_cache_get_by_devt
to get the device for the device number supplied. Then the code
used dev_name(dev) to get the name which is then used in check
whether there's any mpath on top of this dev...
This patch uses sysfs to get the base name for the partition
instead, hence avoiding the device cache which is a correct
approach here.
The message "Cannot deactivate remotely exclusive device locally." makes
sense only for clustered LV. If the LV is non-clustered, then it's
always exclusive by definition and if it's already deactivated, this
message pops up inappropriately as those two conditions are met.
So issue the message only if the conditions are met AND we have clustered VG.
With cmirrord, we can do pvmove of clustered mirror. The code checking
suitability of LVs on the PV being moved issued a message if a mirror
LV was found and the VG was clustered. However, the actual pvmove did
work correctly.
The top-level mirror LV is actually skipped in the code since it's
always layered on top of internal LVs making up the mirror LV and for pvmove
we consider these internal devices only as they're actually layered on
top of concrete PVs then. But we don't need to issue any message here
about skipping the top-level mirror LV - it's misleading here.
Commit e80884cd08 tried to dump filters
for them to be reevaluated when creating a PV to avoid overwriting
any existing signature that may have been created after last
scan/filtering.
However, we need to call refresh_filters instead of
persistent_filter->dump since dump requires proper rescannig to fill
up the persistent filter again. However, this is true only for pvcreate
but not for vgcreate with PV creation where the scanning happens before
this PV creation and hence the next rescan (if not full scan), does not
fill the persistent filter.
Also, move refresh_filters so that it's called sooner and only for
pvcreate, vgcreate already calls lvmcache_label_scan(cmd, 2) which
then calls refresh_filters itself, so no need to reevaluate this again.
This caused the persistent filter (/etc/lvm/cache/.cache file) to be
wrong and contain only the PV just being processed with
vgcreate <vg_name> <pv_name_to_create>.
This regression caused other block devices to be filtered out in case
the vgcreate with PV creation was used and then the persistent filter
is used by any other LVM command afterwards.
Make lvresize -l+%FREE support approximate allocation.
Move existing "Reducing/Extending' message to verbose level
and change it to say 'up to' if approximate allocation is being used.
Replace it with a new message that gives the actual old and new size or
says 'unchanged'.
This is addendum to commit 2e82a070f3
which fixed these spurious messages that appeared after commit
651d5093ed ("avoid pv_read in
find_pv_by_name").
There was one more "not found" message issued in case the device
could not be found in device cache (commit 2e82a07 fixed this only
for PV lookup itself). But if we "allow_unformatted" for
find_pv_by_name, we should not issue this message even in case
the device can't be found in dev cache as we just need to know
whether there's a PV or not for the code to decide on next steps
and we don't want to issue any messages if either device itself
is not found or PV is not found.
For example, when we were creating a new PV (and so allow_unformatted = 1)
and the device had a signature on it which caused it to be filtered
by device filter (e.g. MD signature if md filtering is enabled),
or it was part of some other subsystem (e.g. multipath), this message
was issued on find_pv_by_name call which was misleading.
Also, remove misleading "stack" call in case find_pv_by_name
returns NULL in pvcreate_check - any error state is reported
later by pvcreate_check code so no need to "stack" here.
There's one more and proper check to issue "not found" message if
the device can't be found in device cache within pvcreate_check fn
so this situation is still covered properly later in the code.
Before this patch (/dev/sda contains MD signature and is therefore filtered):
$ pvcreate /dev/sda
Physical volume /dev/sda not found
WARNING: linux_raid_member signature detected on /dev/sda at offset 4096. Wipe it? [y/n]:
With this patch applied:
$ pvcreate /dev/sda
WARNING: linux_raid_member signature detected on /dev/sda at offset 4096. Wipe it? [y/n]:
Non-existent devices are still caught properly:
$ pvcreate /dev/sdx
Device /dev/sdx not found (or ignored by filtering).
2.02.106 added suffixes to some LV uuids in the kernel.
If any of these LVs is activated with 2.02.105 or earlier,
and then a later version is used, the LVs appear invisible and
activation commands fail.
The code now has to check the kernel for both old and new uuids.
Fix get_pool_params to only read params.
Add poolmetadataspare option to get_pool_params.
Move all profile code into update_pool_params.
Move recalculate code into pool_manip.c
Major update of lvconvert code to handle cache and thin.
related targets.
Code tries to unify handling of cache and thin pools.
Better supports lvm2 syntax:
lvconvert --type cache --cachepool vg/pool vg/cache
lvconvert --type thin --thinpool vg/pool vg/extorg
lvconvert --type cache-pool vg/pool
lvconvert --type thin-pool vg/pool
as well as:
lvconvert --cache --cachepool vg/pool vg/cache
lvconvert --thin --thinpool vg/pool vg/extorg
lvconvert --cachepool vg/pool
lvconvert --thinpool vg/pool
While catching much more command line errors.
(Yet couple paths still needs more tests)
Detects as much cmdline errors prior opening VG.
Uses single lvconvert_name_params to convert LV names.
Detects as much incompatibilies in VG prior prompting.
Uses single prompt to confirm whole conversion.
TODO: still the code needs fixes...
Since the type passed LV is changed and content of data detroyed,
query user with prompt to confirm this operation.
Also add a proper wiping of header.
Using '--yes' will skip this prompt:
lvconvert -s --yes vg/lv vg/lvcow
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
lv_active_{locally,remotely,exclusively} display the original
"lv_active" field in a more separate way so that we can create
selection criteria in a binary-based form (yes/no).
Support remove of thin volumes With --force --force
when thin pools is damaged.
This way it's possible to remove thin pool with
unrepairable metadata without requiring to
manually edit lvm2 metadata.
lvremove -ff vg/pool
removes all thin volumes and pool even when
thin pool cannot be activated (to accept
removal of thin volumes in kernel metadata)
Use builddir not srcdir with make pofile.
Append 'incfile:' lines to %.d files to handle newly-missing dependencies
without 'make clean' after a file is moved or deleted.
Use suffixes for easier detection of private volumes.
This commit makes older volume UUIDs incompatible and
it most probably needs machine reboot after upgrade.
When creating pool's metadata - create initial LV for clearing with some
generic name and after the volume is create & cleared - rename it to
reserved name '_tmeta/_cmeta'.
We should not expose 'reserved' names for public LVs.
When repairing RAID LVs that have multiple PVs per image, allow
replacement images to be reallocated from the PVs that have not
failed in the image if there is sufficient space.
This allows for scenarios where a 2-way RAID1 is spread across 4 PVs,
where each image lives on two PVs but doesn't use the entire space
on any of them. If one PV fails and there is sufficient space on the
remaining PV in the image, the image can be reallocated on just the
remaining PV.
I've changed build_parallel_areas_from_lv to take a new parameter
that allows the caller to build parallel areas by LV vs by segment.
Previously, the function created a list of parallel areas for each
segment in the given LV. When it came time for allocation, the
parallel areas were honored on a segment basis. This was problematic
for RAID because any new RAID image must avoid being placed on any
PVs used by other images in the RAID. For example, if we have a
linear LV that has half its space on one PV and half on another, we
do not want an up-convert to use either of those PVs. It should
especially not wind up with the following, where the first portion
of one LV is paired up with the second portion of the other:
------PV1------- ------PV2-------
[ 2of2 image_1 ] [ 1of2 image_1 ]
[ 1of2 image_0 ] [ 2of2 image_0 ]
---------------- ----------------
Previously, it was possible for this to happen. The change makes
it so that the returned parallel areas list contains one "super"
segment (seg_pvs) with a list of all the PVs from every actual
segment in the given LV and covering the entire logical extent range.
This change allows RAID conversions to function properly when there
are existing images that contain multiple segments that span more
than one PV.
...to avoid using cached value (persistent filter) and therefore
not noticing any change made after last scan/filtering - the state
of the device may have changed, for example new signatures added.
$ lvm dumpconfig --type diff
allocation {
use_blkid_wiping=0
}
devices {
obtain_device_list_from_udev=0
}
$ cat /etc/lvm/cache/.cache | grep sda
$ vgscan
Reading all physical volumes. This may take a while...
Found volume group "fedora" using metadata type lvm2
$ cat /etc/lvm/cache/.cache | grep sda
"/dev/sda",
$ parted /dev/sda mklabel gpt
Information: You may need to update /etc/fstab.
$ parted /dev/sda print
Model: QEMU QEMU HARDDISK (scsi)
Disk /dev/sda: 134MB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start End Size File system Name Flags
$ cat /etc/lvm/cache/.cache | grep sda
"/dev/sda",
====
Before this patch:
$ pvcreate /dev/sda
Physical volume "/dev/sda" successfully created
With this patch applied:
$ pvcreate /dev/sda
Physical volume /dev/sda not found
Device /dev/sda not found (or ignored by filtering).
Take a local file lock to prevent concurrent activation/deactivation of LVs.
Thin/cache types and an extension for cluster support are excluded for
now.
'lvchange -ay $lv' and 'lvchange -an $lv' should no longer cause trouble
if issued concurrently: the new lock should make sure they
activate/deactivate $lv one-after-the-other, instead of overlapping.
(If anyone wants to experiment with the cluster patch, please get in touch.)
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
Let's use the size of origin as the real base for percenta calculation,
and 'silenly' add needed metadata space for snapshot.
So now command 'lvcreate -s -l100%ORIGIN vg/lv' should always create a
snapshot to handle full device overwrite.
When creating a cache LV with a RAID origin, we need to ensure that
the sub-LVs of that origin properly change their names to include
the "_corig" extention of the top-level LV. We do this by first
performing a 'lv_rename_update' before making the call to
'insert_layer_for_lv'.
The thin-generic.profile contains settings for thin/thin pool volumes
suitable for generic environment/use containing default settings.
This allows users to change the global lvm.conf settings at will
and still keep the original settings for volumes that have this
thin profile assigned already.
Internal reporting function cannot handle NULL reporting value,
so ensure there is at least dummy label.
So move dummy_lable from tools/reporter.c and use it for all
report_object() calls in lib/report/report.c.
(Fixes RHBZ 1108394)
Simlify lvm_report_object initialization.
Enable 'retry' deactivation also in 'cleanup' phase.
It shouldn't be mostly needed - however udev now produces
more and more completelny non-synchronizable device opens,
so even for orphan devices we can't easily predict where
udevd opens devices.
So it's more preferable here to log error about device being open
and retry clean, but let the command proceed.
LVM has restricter character set that is allowed for VG-LV names
and the dm names constructed do not contain any blacklisted characters
that would require name mangling.
Also, when any other device-mapper device is scanned that could
possibly contain such blacklisted characters, we reference the
device by its major:minor instead of dm name (e.g. _device_is_usable fn).
The "default.profile" name was misleading. It's actually a helper
*template* that can be used for copying and further editing to create
a new profile.
Also, we have separate command and metadata profiles now so the templates
are separated as well - we can't mix profile settings from one group with
another - such profile is rejected by lvm tools.
Warn user before converting volume to different type.
WARNING: Converting vg/lvol0 logical volume to pool's meta/data volume.
THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
Since the content of volume is lost we have to query user to confirm
such operation. If user is 100% sure, he may use '--yes' to avoid prompts.
The dumpconfig now understands --commandprofile/--profile/--metadataprofile
The --commandprofile and --profile functionality is almost the same
with only one difference and that is that the --profile is just used
for dumping the content, it's not applied for the command itself
(while the --commandprofile profile is applied like it is done for
any other LVM command).
We also allow --metadataprofile for dumpconfig - dumpconfig *does not*
touch VG/LV and metadata in any way so it's OK to use it here (just for
dumping the content, checking the profile validity etc.).
The validity of the profile can be checked with:
dumpconfig --commandprofile/--profile/--metadataprofile --validate
...depending on the profile type.
Also, mention --config in the dumpconfig help string so users know
that dumpconfig handles this too (it did even before, but it was not
documented in the help string).
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
The dumpconfig reuses existing config_def_check results in case
the check is done during general lvm command context initialization
(when enabled by config/checks=1) so dumpconfig does not need to run
the same check again during its execution, hence saving some time.
However, we don't check for differences from defaults during general
lvm command initialization as it's useless at that time. It makes
sense only in case when such a check is directly requested (like in
the case of lvm dumpconfig --type diff). We need to take care that
the reused information was already produced with this "diff" checking
before and if not, we need to force the check so the check status also
gathers the new "diff" info now.
Also, do not do diff checking for any other dumpconfig command that
is run after dumpconfig --type diff.
When cmd refresh is called, we need to move any already loaded profiles
to profiles_to_load list which will cause their reload on subsequent
use. In addition to that, we need to take into account any change
in config/profile configuration setting on cmd context refresh
since this setting could be overriden with --config.
Also, when running commands in the shell, we need to remove the
global profile used from the configuration cascade so the profile
is not incorrectly reused next time when the --profile option is
not specified anymore for the next command in the shell.
This bug only affected profile specified by --profile cmd line
arg, not profiles referenced from LVM metadata.
Since decisions in the silent mode may not be always obvious,
print skipped prompt with answer 'n'.
Also document '-qq' behaviour (single -q only shuts
logging, while -qq sets silent mode).
Share DM_REPORT_FIELD_RESERVED_NAME_{HELP,HELP_ALT} between libdm and
any libdm user to handle reserved field names, in this case the virtual
field name to show help instead of failing on unrecognized field.
The libdm user also needs to check the field name so it can fire
proper code in this case (cleanup, exit etc.).
Support upto 3 levels os nesting signal blocking.
As of today - code blocks signals immediatelly when it opens
VG in read-write mode - this however makes current prompt usage
then partially unusable since user may not 'break' command
during prompt (something most user would expect).
Until a better fix for prompting is implemented, put in support
for signal nesting - thus when prompt enables signal acceptance,
make it possible to really break command at this point.
When quering for dmeventd monitoring status, check first
if lvm2 is configured to monitor to avoid unwanted start
of dmeventd process for answering monitoring status.
When showing ACTIVE status for snapshot's origin,
avoid testing all its snapshot - it's not useful
to tell user origin is inactivate, while it's clearly
available and running - just one of its snapshot leg
is invalid...
Relocate info from thin pool and thin volume segments
to proper code section for segments.
Add discards and thin count status info.
Info is shown with 'lvdisplay --maps' (like for other segments).
For percentage display we need -tpool - so check for layered
device presence here instead of plain pool device.
Also update 'info' - so when pool is 'available' we
display open count for -tpool device instead of mostly
irrelevant pool.
TODO: Maybe we should actually display this open info always?
(even when just -tpool is available, but pool is not)
Emphesize virtual extents for virtual LVs and for
those use 'Virtual extents' instead of 'Logical extents',
so it's immeditatelly visible, which extents do have
straighforward physical backend.
While the 'raid1/10' segment types were being handled inadvertently
by '_move_mirrors()', the parity RAIDs were not being properly checked
to ensure that the user had specified all necessary PVs when moving
them. Thus, internal errors were being triggered when only part of
a RAID LV was moved to the new VG. I've added a new function,
'_move_raid()', which properly checks over any affected RAID LVs and
ensures that all the necessary PVs are being moved.
ignore_suspended_devices=0 is already used in lvm.conf we distribute,
but it was still "1" in the code (so it was used when lvm.conf value
was not defined). It should be "0" too.
Config variables that are processed during setup prior to calling into
particular tools must not be accessed directly afterwards in case the
values already got overridden.
_process_config() already used the tests I'm removing here to call
lvmetad_set_active() and set up lvmetad_used().
This should be the preferred way of configuring lvm2 for udev/systemd
since otherwise one can end up with the processes run from udev (the
pvscan we run for lvmetad update on events) to be killed prematurely
and this can end up with LVM volumes not activated in the end.
This is sort of info we always ask people to retrieve when
inspecting problems in systemd environment so let's have this
as part of lvmdump directly.
The -s option does not need to be bound to systemd only. We could
add support for initscripts or any other system-wide/service tracking
info that can help us with debugging problems.
Set A_POSITIONAL_FILL if the array of areas is being filled
positionally (with a slot corresponding to each 'leg') rather
than sequentially (with all suitable areas found, to be sorted
and selected from).
Prior adding new reply to the list, check
if the reply thread is not already finished.
In that case discard adding message
(which would otherwise be leaked).
Use mutex to access localsock values, so check
num_replies when the thread is not yet finished.
Check for threadid prior the mutex taking
(though this check is probably not really needed)
Added complexity with extra reply mutex is not worth the troubles.
The only place which may slightly benefit from this mutex is timeout
and since this is rather error case - let's convert it to
localsock.mutex and keep it simple.
Move the pthread mutex and condition creation and destroy
to correct place right after client memory is allocatedd
or is going to be released.
In the original place it's been in race with lvm thread
which could have still unlock mutex while it's been already
destroyed.
When TEST_MODE flag is passed around the cluster,
it's been use in thread unprotected way, so it may have
influenced behaviour of other running parallel lvm commands
(activation/deactivation/suspend/resume).
Fix it by set/query function only under lvm mutex.
For hold_un/lock function calls check lock_flags bits directly.
When pvmove0 is finished, it replaces temporarily pvmove0
with error segment, however in this case, pvmove0 remains
unremovable in case pvmove --abort is interrupted in this
moment - since it's not a pvmove anymore and normal
lvremove can't be used to remove LOCKED lv.
There were two bugs before when using pvcreate --restorefile together
with data alignment and its offset specified:
- the --dataalignment was always ignored due to missing braces in the
code when validating the divisibility of supplied --dataalignment
argument with pe_start which we're just restoring:
if (pp->rp.pe_start % pp->data_alignment)
log_warn("WARNING: Ignoring data alignment %" PRIu64
" incompatible with --restorefile value (%"
PRIu64").", pp->data_alignment, pp->rp.pe_start);
pp->data_alignment = 0
The pp->data_alignment should be zeroed only if the pe_start is not
divisible with data_alignment.
- the check for compatibility of restored pe_start was incorrect too
since it did not properly count with the dataalignmentoffset that
could be supplied together with dataalignment
The proper formula is:
X * dataalignment + dataalignmentoffset == pe_start
So it should be:
if ((pp->rp.pe_start % pp->data_alignment) != pp->data_alignment_offset) {
...ignore supplied dataalignment and dataalignment offset...
}
This test for LV name restriction check name of device is below 128
chars (which is enforced by dm target).
Thus it should not count with device name.
(Though the test for PATH_MAX size should be probably also added,
but this is runtime test, since theoretically devpath might differ in cluster)
It's unclear why we should prohibit use of -v output.
So reenable (like with other 'display' tools)
But -c -m is really unsupported - return invalid cmd.
Sort order for -C|--columns as with other options,
and use short capital name as the first (as with other options).
Also drop multiple reference for pvs/lvs/vgs, since now
the text for -C is really close to referrence of lvm anyway.