IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Apply the same idea as vg_update.
Before doing the VG remove on disk, invalidate
the VG in lvmetad. After the VG is removed,
remove the VG in lvmetad. If the command fails
after removing the VG on disk, but before removing
the VG metadata from lvmetad, then a subsequent
command will see the INVALID flag and not use the
stale metadata from lvmetad.
Previously, a command sent lvmetad new VG metadata in vg_commit().
In vg_commit(), devices are suspended, so any memory allocation
done by the command while sending to lvmetad, or by lvmetad while
updating its cache could deadlock if memory reclaim was triggered.
Now lvmetad is updated in unlock_vg(), after devices are resumed.
The new method for updating VG metadata in lvmetad is in two phases:
1. In vg_write(), before devices are suspended, the command sends
lvmetad a short message ("set_vg_info") telling it what the new
VG seqno will be. lvmetad sees that the seqno is newer than
the seqno of its cached VG, so it sets the INVALID flag for the
cached VG. If sending the message to lvmetad fails, the command
fails before the metadata is committed and the change is not made.
If sending the message succeeds, vg_commit() is called.
2. In unlock_vg(), after devices are resumed, the command sends
lvmetad the standard vg_update message with the new metadata.
lvmetad sees that the seqno in the new metadata matches the
seqno it saved from set_vg_info, and knows it has the latest
copy, so it clears the INVALID flag for the cached VG.
If a command fails between 1 and 2 (after committing the VG on disk,
but before sending lvmetad the new metadata), the cached VG retains
the INVALID flag in lvmetad. A subsequent command will read the
cached VG from lvmetad, see the INVALID flag, ignore the cached
copy, read the VG from disk instead, update the lvmetad copy
with the latest copy from disk, (this clears the INVALID flag
in lvmetad), and use the correct VG metadata for the command.
(This INVALID mechanism already existed for use by lvmlockd.)
Add code to support more LVs to be resized through a same code path
using a single lvresize_params struct.
(Now it's used for thin-pool metadata resize,
next user will be snapshot virtual resize).
Update code to adjust percent amount resize for use_policies.
Properly activate inactive thin-pool in case of any pool resize
as the command should not 'deffer' this operation to next activation.
Use common API design and pass just LV pointer to lv_manip.c functions.
Read cmd struct via lv->vg->cmd when needed.
Also do not try to return EINVALID_CMD_LINE error when we
have already openned VG - this error code can only be returned before
locking VG.
A number of places are working on a specific dev when they
call lvmcache_info_from_pvid() to look up an info struct
based on a pvid. In those cases, pass the dev being used
to lvmcache_info_from_pvid(). When a dev is specified,
lvmcache_info_from_pvid() will verify that the cached
info it's using matches the dev being processed before
returning the info. Calling code will not mistakenly
get info for the wrong dev when duplicate devs exist.
This confusion was happening when scanning labels when
duplicate devs existed. label_read for the first dev
would add an info struct to lvmcache for that dev/pvid.
label_read for the second dev would see the pvid in
lvmcache from first dev, and mistakenly conclude that
the label_read from the second dev can be skipped
because it's already been done. By verifying that the
dev for the cached pvid matches the dev being read,
this mismatch is avoided and the label is actually read
from the second duplicate.
Add function to obtain percentage value for cache lv_seg_status.
This API is rather evolving 'middle' step as the ultimate goal
is segment API fuctionality.
But first we need to be clear at reporting level which values
are needed to be reported for which LVs and segments.
lv_refresh_suspend_resume() has escaped with fail ret code
after failing suspend and could have left many volumes in suspend state.
So always unconditionally call resume also when suspend has failed.
Check first the LV is cow before even checking it's a merging COW.
Note: previosly merging_cow was also merging origin, so without
this explicit check it used to return '1' also when passed
LV has been merging origin.
When mirror/raid called copy_percent function to return,
when 100% was supposed to be returned, wrong float 100.0 value
could have been reported back instead of dm_percent_t DM_PERCENT_100.
There is broken API somewhere, since the function here rely on
actively being modifid VG content even when doing 'lvs' operation.
(extents_copies)
This refactors the code for autoactivation. Previously,
as each PV was found, it would be sent to lvmetad, and
the VG would be autoactivated using a non-standard VG
processing function (the "activation_handler") called via
a function pointer from within the lvmetad notification path.
Now, any scanning that the command needs to do (scanning
only the named device args, or scanning all devices when
there are no args), is done first, before any activation
is attempted. During the scans, the VG names are saved.
After scanning is complete, process_each_vg is used to do
autoactivation of the saved VG names. This makes pvscan
activation much more similar to activation done with
vgchange or lvchange.
The separate autoactivate phase also means that if lvmetad
is disabled (either before or during the scan), the command
can continue with the activation step by simply not using
lvmetad and reverting to disk scanning to do the
activation.
Add support for active cache LV.
Handle --cachemode args validation during command line processing.
Rework some lvm2 internal to use lvm2 defined CACHE_MODE enums
indepently on libdm defines and use enum around the code instead
of passing and comparing strings.
When there are duplicate devices for a PV, one device
is preferred and chosen to exist in the VG. The other
devices are not used by lvm, but are displayed by pvs
with a new PV attr "d", indicating that they are
unchosen duplicate PVs.
The "duplicate" reporting field is set to "duplicate"
when the PV is an unchosen duplicate, and that field
is blank for the chosen PV.
Wait to compare and choose alternate duplicate devices until
after all devices are scanned. During scanning, the first
duplicate dev is kept in lvmcache, and others are kept in a
new list (_found_duplicate_devs).
After all devices are scanned, compare all the duplicates
available for a given PVID and decide which is best.
If the dev used in lvmcache is changed, drop the old dev
from lvmcache entirely and rescan the replacement dev.
Previously the VG metadata from the old dev was kept in
lvmcache and only the dev was replaced.
A new config setting devices/allow_changes_with_duplicate_pvs
can be set to 0 which disallows modifying a VG or activating
LVs in it when the VG contains PVs with duplicate devices.
Set to 1 is the old behavior which allowed the VG to be
changed.
The logic for which of two devs is preferred has changed.
The primary goal is to choose a device that is currently
in use if the other isn't, e.g. by an active LV.
. prefer dev with fs mounted if the other doesn't, else
. prefer dev that is dm if the other isn't, else
. prefer dev in subsystem if the other isn't
If neither device is preferred by these rules, then don't
change devices in lvmcache, leaving the one that was found
first.
The previous logic for preferring a device was:
. prefer dev in subsystem if the other isn't, else
. prefer dev without holders if the other has holders, else
. prefer dev that is dm if the other isn't
Support parsing --chunksize option also when converting.
Now user can use cache pool created with i.e. 32K chunksize,
while in caching user can select 512K blocks.
Tool is supposed to validate cache metadata size is big enough
to support such chunk size. Otherwise error is shown.
When creating LV - in some case we change created segment type
(ATM for cache and snapshot) and we then manipulate with
lv segment according to 'lp' segtype.
Fix this by checking for proper type before accessing segment members.
This makes command like:
lvcreate --type cache-pool -L10 vg/cpool
lvcreate -H -L10 --cachesettings migtation_threshold=10000 vg/cpool
to pass since now tool correctly selects default cache policy.