IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
I've changed build_parallel_areas_from_lv to take a new parameter
that allows the caller to build parallel areas by LV vs by segment.
Previously, the function created a list of parallel areas for each
segment in the given LV. When it came time for allocation, the
parallel areas were honored on a segment basis. This was problematic
for RAID because any new RAID image must avoid being placed on any
PVs used by other images in the RAID. For example, if we have a
linear LV that has half its space on one PV and half on another, we
do not want an up-convert to use either of those PVs. It should
especially not wind up with the following, where the first portion
of one LV is paired up with the second portion of the other:
------PV1------- ------PV2-------
[ 2of2 image_1 ] [ 1of2 image_1 ]
[ 1of2 image_0 ] [ 2of2 image_0 ]
---------------- ----------------
Previously, it was possible for this to happen. The change makes
it so that the returned parallel areas list contains one "super"
segment (seg_pvs) with a list of all the PVs from every actual
segment in the given LV and covering the entire logical extent range.
This change allows RAID conversions to function properly when there
are existing images that contain multiple segments that span more
than one PV.
pvmove can be used to move single LVs by name or multiple LVs that
lie within the specified PV range (e.g. /dev/sdb1:0-1000). When
moving more than one LV, the portions of those LVs that are in the
range to be moved are added to a new temporary pvmove LV. The LVs
then point to the range in the pvmove LV, rather than the PV
range.
Example 1:
We have two LVs in this example. After they were
created, the first LV was grown, yeilding two segments
in LV1. So, there are two LVs with a total of three
segments.
Before pvmove:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
After pvmove inserts the temporary pvmove LV:
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
-------------------------------------
PV | 000 - 255 | 256 - 511 | 512 - 767 |
-------------------------------------
Each of the affected LV segments now point to a
range of blocks in the pvmove LV, which purposefully
corresponds to the segments moved from the original
LVs into the temporary pvmove LV.
The current implementation goes on from here to mirror the temporary
pvmove LV by segment. Further, as the pvmove LV is activated, only
one of its segments is actually mirrored (i.e. "moving") at a time.
The rest are either complete or not addressed yet. If the pvmove
is aborted, those segments that are completed will remain on the
destination and those that are not yet addressed or in the process
of moving will stay on the source PV. Thus, it is possible to have
a partially completed move - some LVs (or certain segments of LVs)
on the source PV and some on the destination.
Example 2:
What 'example 1' might look if it was half-way
through the move.
--------- --------- ---------
| LV1s0 | | LV2s0 | | LV1s1 |
--------- --------- ---------
| | |
-------------------------------------
pvmove0 | seg 0 | seg 1 | seg 2 |
-------------------------------------
| | |
| -------------------------
source PV | | 256 - 511 | 512 - 767 |
| -------------------------
| ||
-------------------------
dest PV | 000 - 255 | 256 - 511 |
-------------------------
This update allows the user to specify that they would like the
pvmove mirror created "by LV" rather than "by segment". That is,
the pvmove LV becomes an image in an encapsulating mirror along
with the allocated copy image.
Example 3:
A pvmove that is performed "by LV" rather than "by segment".
--------- ---------
| LV1s0 | | LV2s0 |
--------- ---------
| |
-------------------------
pvmove0 | * LV-level mirror * |
-------------------------
/ \
pvmove_mimage0 / pvmove_mimage1
------------------------- -------------------------
| seg 0 | seg 1 | | seg 0 | seg 1 |
------------------------- -------------------------
| | | |
------------------------- -------------------------
| 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 |
------------------------- -------------------------
source PV dest PV
The thing that differentiates a pvmove done in this way and a simple
"up-convert" from linear to mirror is the preservation of the
distinct segments. A normal up-convert would simply allocate the
necessary space with no regard for segment boundaries. The pvmove
operation must preserve the segments because they are the critical
boundary between the segments of the LVs being moved. So, when the
pvmove copy image is allocated, all corresponding segments must be
allocated. The code that merges ajoining segments that are part of
the same LV when the metadata is written must also be avoided in
this case. This method of mirroring is unique enough to warrant its
own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two
existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV
(for user created mirrors).
The advantages of performing pvmove in this way is that all of the
LVs affected can be moved together. It is an all-or-nothing approach
that leaves all LV segments on the source PV if the move is aborted.
Additionally, a mirror log can be used (in the future) to provide tracking
of progress; allowing the copy to continue where it left off in the event
there is a deactivation.
The list of strings is used quite frequently and we'd like to reuse
this simple structure for report selection support too. Make it part
of libdevmapper for general reuse throughout the code.
This also simplifies the LVM code a bit since we don't need to
include and manage lvm-types.h anymore (the string list was the
only structure defined there).
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
Perform two allocation attempts with cling if maximise_cling is set,
first with then without positional fill.
Avoid segfaults from confusion between positional and sorted sequential
allocation when number of stripes varies as reported here:
https://www.redhat.com/archives/linux-lvm/2014-March/msg00001.html
Set A_POSITIONAL_FILL if the array of areas is being filled
positionally (with a slot corresponding to each 'leg') rather
than sequentially (with all suitable areas found, to be sorted
and selected from).
When pvmove0 is finished, it replaces temporarily pvmove0
with error segment, however in this case, pvmove0 remains
unremovable in case pvmove --abort is interrupted in this
moment - since it's not a pvmove anymore and normal
lvremove can't be used to remove LOCKED lv.
Since the usability problem were fixed, we can use this function.
Cleanup orphan LVs with TEMPORARY flags
(reduces couple blkid error reports, but couple of them
is still left...)
Since cache segment is purely virtual mapping, it has nothing for
discard. Discardable is cache origin here which is now
properly removed on 'delete' phase.
Plain lv_empty() call needs to only detach cache origin and leave
origin unchanged.
Drop unused passed cmd pointer from function.
TODO:
We have two similar functions (though not identical)
lv_manip.c: for_each_sub_lv()
metadata.c: _lv_each_dependency()
They seem to not always match - we should probably convert
to use only a single function.
Use proper vgmem memory pool for allocation of LV name in the vg
and check if new renamed LV is a valid name.
TODO: validation should really use also VG name, othewise we are not
able to tell "vgname-lvname" will be valid.
Create a separate function to validation snapshot min chunk value
and relocate code into snapshot_manip file.
This function will be shared with lvconvert then.
When we create thin-pool we have used trick to keep
volume active, but since we now support TEMPORARY flag,
we could just localy active & deactive metadata LV,
and let the thinpool through normal activation process.
The same as for allocation/thin_pool_chunk_size - the default value
used is just a starting point. The calculation continues using the
properties of the devices actually used.
The allocation/thin_pool_chunk_size is a bit more complex. It's default
value is evaluated in runtime based on selected thin_pool_chunk_size_policy.
But the value is just a starting point. The calculation then continues
with dependency on the properties of the devices used. Which means for
such a default value, we know only the starting value.
While stripe size is twice the physical extent size,
the original code will not reduce stripe size to maximum
(physical extent size).
Signed-off-by: Zhiqing Zhang <zhangzq.fnst@cn.fujitsu.com>
Start to convert percentage size handling in lvresize to the new
standard. Note in the man pages that this code is incomplete.
Fix a regression in non-percentage allocation in my last check in.
This is what I am aiming for:
-l<extents>
-l<percent> LV/ORIGIN
sets or changes the LV size based on the specified quantity
of logical logical extents (that might be backed by
a higher number of physical extents)
-l<percent> PVS/VG/FREE
sets or changes the LV size so as to allocate or free the
desired quantity of physical extents (that might amount to a
lower number of logical extents for the LV concerned)
-l+50%FREE - Use up half the remaining free space in the VG when
carrying out this operation.
-l50%VG - After this operation, this LV should be using up half the
space in the VG.
-l200%LV - Double the logical size of this LV.
-l+100%LV - Double the logical size of this LV.
-l-50%LV - Reduce the logical size of this LV by half.
Several fixes for the recent changes that treat allocation percentages
as upper limits.
Improve messages to make it easier to see what is happening.
Fix some cases that failed with errors when they didn't need to.
Fix crashes when first_seg() returns NULL.
Remove a couple of log_errors that were actually debugging messages.
Remove 'skip' argument passed into the function.
We always used '0' - as this is the only supported
option (-K) and there is no complementary option.
Also add some testing for behaviour of skipping.
When an origin exists and the 'lvcreate' command is used to create
a cache pool + cache LV, the table is loaded into the kernel but
never instantiated (suspend/resume was never called). A user running
LVM commands would never know that the kernel did not have the
proper state unless they also ran the dmsetup 'table/status' command.
The solution is to suspend/resume the cache LV to make the loaded
tables become active.
Introduce a new parameter called "approx_alloc" that is set when the
desired size of a new LV is specified in percentage terms. If set,
the allocation code tries to get as much space as it can but does not
fail if can at least get some.
One of the practical implications is that users can now specify 100%FREE
when creating RAID LVs, like this:
~> lvcreate --type raid5 -i 2 -l 100%FREE -n lv vg
lv_active_change will enforce proper activation.
Modification of activation was wrong and lead to misuse of
autoactivation. Fix allows to use proper local exclusive activation,
while the removed code turned this into just exclusive
activation (losing required local property).
The libblkid can detect DM_snapshot_cow signature and when creating
new LVs with blkid wiping used (allocation/use_blkid_wiping=1 lvm.conf
setting and --wipe y used at the same time - which it is by default).
Do not issue any prompts about this signature when new LV is created
and just wipe it right away without asking questions. Still keep the
log in verbose mode though.
This patch allows users to create cache LVs with 'lvcreate'. An origin
or a cache pool LV must be created first. Then, while supplying the
origin or cache pool to the lvcreate command, the cache can be created.
Ex1:
Here the cache pool is created first, followed by the origin which will
be cached.
~> lvcreate --type cache_pool -L 500M -n cachepool vg /dev/small_n_fast
~> lvcreate --type cache -L 1G -n lv vg/cachepool /dev/large_n_slow
Ex2:
Here the origin is created first, followed by the cache pool - allowing
a cache LV to be created covering the origin.
~> lvcreate -L 1G -n lv vg /dev/large_n_slow
~> lvcreate --type cache -L 500M -n cachepool vg/lv /dev/small_n_fast
The code determines which type of LV was supplied (cache pool or origin)
by checking its type. It ensures the right argument was given by ensuring
that the origin is larger than the cache pool.
If the user wants to remove just the cache for an LV. They specify
the LV's associated cache pool when removing:
~> lvremove vg/cachepool
If the user wishes to remove the origin, but leave the cachepool to be
used for another LV, they specify the cache LV.
~> lvremove vg/lv
In order to remove it all, specify both LVs.
This patch also includes tests to create and remove cache pools and
cache LVs.
This patch allows the creation and removal of cache pools. Users are not
yet able to create cache LVs. They are only able to define the space used
for the cache and its characteristics (chunk_size and cache mode ATM) by
creating the cache pool.
Cache pools require a data and metadata area (like thin pools). Unlike
thin pool, if 'cache_pool_metadata_require_separate_pvs' is not set to
'1', the metadata and data area will be allocated from the same device.
It is also done in a manner similar to RAID, where a single chunk of
space is allocated and then split to form the metadata and data device -
ensuring that they are together.
Avoid use of external origin with size unaligned/incompatible with
thin pool chunk size, since the last chunk is not correctly provisioned
when it is overwritten.
Since we are currently incapable of providing zeroes for
reextended thin volume area, let's disable extension of
such already reduce thin volumes.
(in-release change)
When thin volume is using external origin, current thin target
is not able to supply 'extended' size with empty pages.
lvm2 detects version and disables extension of LV past the external
origin size in this case.
Thin LV could be however still reduced and extended freely bellow
this size.
In preparation for other segment types that create and use "pools", we
s/create_thin_pool/create_pool/. This way it is not awkward when creating
a cachepool, for example, to use "create_thin_pool".
Only flag thin LV for no scanning in udev if this LV is about
to be wiped. This happens only in case the thin LV's pool was not
created with zeroing of the new blocks enabled.
If we're calling pvcreate on a device that already has a PV label,
the blkid detects the existing PV and then we consider it for wiping
before we continue creating the new PV label and we issue a warning
with a prompt whether such old PV label should be removed. We don't
do this with native signature detection code. Let's make it consistent
with old behaviour.
But still keep this "PV" (identified as "LVM1_member" or "LVM2_member"
by blkid) detection when creating new LVs to avoid unexpected PV label
appeareance inside LV.
Optimize and cleanup recently introduced new function wipe_lv.
Use compound literals to get nicely initialized wipe_params struct.
Pass in lv as explicit argument for wipe_lv.
Use cmd from lv structure.
Initialize only non-null members so it's easy to see what
is the special arg.
This is actually the wipefs functionailty as a matter of fact
(wipefs uses the same libblkid calls).
libblkid is more rich when it comes to detecting various
signatures, including filesystems and users can better
decide what to erase and what should be kept.
The code is shared for both pvcreate (where wiping is necessary
to complete the pvcreate operation) and lvcreate where it's up
to the user to decide.
The verbose output contains a bit more information about the
signature like LABEL and UUID.
For example:
raw/~ # lvcreate -L16m vg
WARNING: linux_raid_member signature detected on /dev/vg/lvol0 at offset 4096. Wipe it? [y/n]
or more verbose one:
raw/~ # lvcreate -L16m vg -v
...
Found existing signature on /dev/vg/lvol0 at offset 4096: LABEL="raw.virt:0" UUID="da6af139-8403-5d06-b8c4-13f6f24b73b1" TYPE="linux_raid_member" USAGE="raid"
WARNING: linux_raid_member signature detected on /dev/vg/lvol0 at offset 4096. Wipe it? [y/n]
The verbose output is the same output as found in blkid.
Use common wipe_lv (former set_lv) fn to do zeroing as well as signature
wiping if needed. Provide new struct wipe_lv_params to define the
functionality.
Bind "lvcreate -W/--wipesignatures y" with proper wipe_lv call.
Also, add "yes" and "force" to lvcreate_params so it's possible
to apply them for the prompt: "WARNING: %s detected on %s. Wipe it? [y/n]".
This patch fixes mostly cluster behavior but also updates
non-cluster reaction where calls like 'lvchange -aln'
lead to incorrect errors for some segment types.
Fix the implicit activation rules where some segment types could
be activated only in exclusive mode in cluster.
lvm2 command was not preserver 'local' property and incorrectly
converted local activations in to plain exclusive, so the local
activation could have activate volumes exclusively, but remotely.
If the volume_list filters out volume from activation,
it is still success result for this function.
Change the error message back to verbose level.
Detect if the volume is active localy before zeroing,
so we report error a bit later for cases, where volume
could not be activated because it doesn't pass through volume
list (but user still could create volume when he disables
zeroing)
Add LV_TEMPORARY flag for LVs with limited existence during command
execution. Such LVs are temporary in way that they need to be activated,
some action done and then removed immediately. Such LVs are just like
any normal LV - the only difference is that they are removed during
LVM command execution. This is also the case for LVs representing
future pool metadata spare LVs which we need to initialize by using
the usual LV before they are declared as pool metadata spare.
We can optimize some other parts like udev to do a better job if
it knows that the LV is temporary and any processing on it is just
useless.
This flag is orthogonal to LV_NOSCAN flag introduced recently
as LV_NOSCAN flag is primarily used to mark an LV for the scanning
to be avoided before the zeroing of the device happens. The LV_TEMPORARY
flag makes a difference between a full-fledged LV visible in the system
and the LV just used as a temporary overlay for some action that needs to
be done on underlying PVs.
For example: lvcreate --thinpool POOL --zero n -L 1G vg
- first, the usual LV is created to do a clean up for pool metadata
spare. The LV is activated, zeroed, deactivated.
- between "activated" and "zeroed" stage, the LV_NOSCAN flag is used
to avoid any scanning in udev
- betwen "zeroed" and "deactivated" stage, we need to avoid the WATCH
udev rule, but since the LV is just a usual LV, we can't make a
difference. The LV_TEMPORARY internal LV flag helps here. If we
create the LV with this flag, the DM_UDEV_DISABLE_DISK_RULES
and DM_UDEV_DISABLE_OTHER_RULES flag are set (just like as it is
with "invisible" and non-top-level LVs) - udev is directed to
skip WATCH rule use.
- if the LV_TEMPORARY flag was not used, there would normally be
a WATCH event generated once the LV is closed after "zeroed"
stage. This will make problems with immediated deactivation that
follows.
A common scenario is during new LV creation when we need to wipe the
newly created LV and avoid any udev scanning before this stage otherwise
it could cause the device (the LV) to be claimed by some other subsystem
for which there were stale metadata within LV data.
This patch adds possibility to mark the LV we're just about to wipe with
a flag that gets passed to udev via DM_COOKIE as a subsystem specific
flag - DM_SUBSYSTEM_UDEV_FLAG0 (in this case the subsystem is "LVM")
so LVM udev rules will take care of handling that.
lib/metadata/lv_manip.c:_sufficient_pes_free() was calculating the
required space for RAID allocations incorrectly due to double
accounting. This resulted in failure to allocate when available
space was tight.
When RAID data and metadata areas are allocated together, the total
amount is stored in ah->new_extents and ah->alloc_and_split_meta is
set. '_sufficient_pes_free' was adding the necessary metadata extents
to ah->new_extents without ever checking ah->alloc_and_split_meta.
This often led to double accounting of the metadata extents. This
patch checks 'ah->alloc_and_split_meta' to perform proper calculations
for RAID.
This error is only present in the function that checks for the needed
space, not in the functions that do the actual allocation.
If "default" thin pool chunk size calculation method is selected,
use minimum_io_size, otherwise optimal_io_size for "performance"
device hint exposed in sysfs. If there appear to be PVs with
different hints presented, use their least common multiple.
If the hint is less than the default value defined for the
calculation method, use the default value instead.
A previous commit (b6bfddcd0a) which
was designed to prevent segfaults during lvextend when trying to
extend striped logical volumes forgot to include calculations for
RAID4/5/6 parity devices. This was causing the 'contiguous' and
'cling_by_tags' allocation policies to fail for RAID 4/5/6.
The solution is to remember that while we can compare
ah->area_count == prev_lvseg->area_count
for non-RAID, we should compare
(ah->area_count + ah->parity_count) == prev_lvseg->area_count
for a general solution.
Older gcc is giving misleading warning:
metadata/lv_manip.c:4018: warning: ‘seg’ may be used uninitialized in
this function
But warning free compilation is better.
Creation, deletion, [de]activation, repair, conversion, scrubbing
and changing operations are all now available for RAID LVs in a
cluster - provided that they are activated exclusively.
The code has been changed to ensure that no LV or sub-LV activation
is attempted cluster-wide. This includes the often overlooked
operations of activating metadata areas for the brief time it takes
to clear them. Additionally, some 'resume_lv' operations were
replaced with 'activate_lv_excl_local' when sub-LVs were promoted
to top-level LVs for removal, clearing or extraction. This was
necessary because it forces the appropriate renaming actions the
occur via resume in the single-machine case, but won't happen in
a cluster due to the necessity of acquiring a lock first.
The *raid* tests have been updated to allow testing in a cluster.
For the most part, this meant creating devices with '-aey' if they
were to be converted to RAID. (RAID requires the converting LV to
be EX because it is a condition of activation for the RAID LV in
a cluster.)
When the pool is created from non-linear target the more complex rules
have to be used and stacking needs to properly decode args for _tdata
LV. Also proper allocation policies are being used according to those
set in lvm2 metadata for data and metadata LVs.
Also properly check for active pool and extra code to active it
temporarily.
With this fix it's now possible to use:
lvcreate -L20 -m2 -n pool vg --alloc anywhere
lvcreate -L10 -m2 -n poolm vg --alloc anywhere
lvconvert --thinpool vg/pool --poolmetadata vg/poolm
lvresize -L+10 vg/pool
The pool metadata LV must be accounted for when determining what PVs
are in a thin-pool. The pool LV must also be accounted for when
checking thin volumes.
This is a prerequisite for pvmove working with thin types.
The function 'get_pv_list_for_lv' will assemble all the PVs that are
used by the specified LV. It uses 'for_each_sub_lv' to traverse all
of the sub-lvs which may compose it.
The PREFERRED allocation mechanism requires the number of areas in the
previous LV segment to match the number in the new segment being
allocated. If they do not match, the code may crash.
E.g. https://bugzilla.redhat.com/989347
Introduce A_AREA_COUNT_MATCHES and when not set avoid referring
to the previous segment with the contiguous and cling policies.
Three fixme's addressed in this commit:
1) lib/metadata/lv_manip.c:_calc_area_multiple() - this could be
safely changed to a comment explaining that currently because
RAID10 can only have a 2-way mirror, we don't need to know the
number of stripes. However, we will need to know that in the
future if RAID10 is to support more than 2-way mirroring.
2) lib/metadata/mirror.c:_delete_lv() - should have been calling
_activate_lv_like_model() with 'mirror_lv'. This is because
'mirror_lv' is the LV that the overall operation is being
performed on. We need to use this LV as the basis for
determining whether to activate locally, or across the
cluster, etc.
3) tools/lvcreate.c:_lvcreate_params() - Minor clean-up. If
'-m 0' is given, treat it as though the mirroring argument
was not given (i.e. as though the requested segment type
was 'stripe' and not mirror).
Pool creation involves clearing of metadata device
which triggers udev watch rule we cannot udev synchronize with
in current code.
This metadata devices needs to be activated localy,
so in cluster mode deactivation and reactivation
is always needed.
However for non-clustered mode we may reload table
via suspend/resume path which avoids collision with
udev watch rule which was occasionaly triggering
retry deactivation loop.
Code has been also split into 2 separate code paths
for thin pools and thin volumes which improved readability
of the code as well.
Deactivation has been moved out of extend_pool() and
decision is now in _lv_create_an_lv() which knows
the change mode.
Remove backup() call from update_pool_lv() as it's been there
duplicated and preperly order backup() call after lvresize,
so there is just one such call.
If the thin pool is known to be active, messages can be passed
to the pool even when the created thin volume is not going to be
activated.
So we do not need to stack large list of message and validate
and catch creation errors earlier in this case.
Replace the test for valid activation combination with simpler list of
deactivation combinations.
The activation/auto_set_activation_skip enables/disables automatic
adding of the ACTIVATION_SKIP LV flag. By default thin snapshots
are flagged to be skipped during activation.
And by default, the auto_set_activation_skip is enabled.
Also add -k/--setactivationskip y/n and -K/--ignoreactivationskip
options to lvcreate.
The --setactivationskip y sets the flag in metadata for an LV to
skip the LV during activation. Also, the newly created LV is not
activated.
Thin snapsots have this flag set automatically if not specified
directly by the --setactivationskip y/n option.
The --ignoreactivationskip overrides the activation skip flag set
in metadata for an LV (just for the run of the command - the flag
is not changed in metadata!)
A few examples for the lvcreate with the new options:
(non-thin snap LV => skip flag not set in MDA + LV activated)
raw/~ $ lvcreate -l1 vg
Logical volume "lvol0" created
raw/~ $ lvs -o lv_name,attr vg/lvol0
LV Attr
lvol0 -wi-a----
(non-thin snap LV + -ky => skip flag set in MDA + LV not activated)
raw/~ $ lvcreate -l1 -ky vg
Logical volume "lvol1" created
raw/~ $ lvs -o lv_name,attr vg/lvol1
LV Attr
lvol1 -wi------
(non-thin snap LV + -ky + -K => skip flag set in MDA + LV activated)
raw/~ $ lvcreate -l1 -ky -K vg
Logical volume "lvol2" created
raw/~ $ lvs -o lv_name,attr vg/lvol2
LV Attr
lvol2 -wi-a----
(thin snap LV => skip flag set in MDA (default behaviour) + LV not activated)
raw/~ $ lvcreate -L100M -T vg/pool -V 1T -n thin_lv
Logical volume "thin_lv" created
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg
LV Attr
pool twi-a-tz-
thin_lv Vwi-a-tz-
thin_snap Vwi---tz-
(thin snap LV + -K => skip flag set in MDA (default behaviour) + LV activated)
raw/~ $ lvcreate -s vg/thin_lv -n thin_snap -K
Logical volume "thin_snap" created
raw/~ $ lvs -o name,attr vg/thin_lv
LV Attr
thin_lv Vwi-a-tz-
(thins snap LV + -kn => no skip flag in MDA (default behaviour overridden) + LV activated)
[0] raw/~ # lvcreate -s vg/thin_lv -n thin_snap -kn
Logical volume "thin_snap" created
[0] raw/~ # lvs -o name,attr vg/thin_snap
LV Attr
thin_snap Vwi-a-tz-
Start separating the validation from the action in the basic lvresize
code moved to the library.
Remove incorrect use of command line error codes from lvresize library
functions. Move errors.h to tools directory to reinforce this,
exporting public versions of the error codes in lvm2cmd.h for dmeventd
plugins to use.
Fix and improve handling on sigint.
Always check for signal presence *before* calling of command,
so it will not call the command when break was hit.
If the command has been finished succesfully there is
no problem to mark the command ok and not report interrupt at all.
Fix cuple related stack; reports and assignments.
If "vgcreate/lvcreate --profile <profile_name>" is used, the profile
name is automatically stored in metadata for making it possible to
load it automatically next time the VG/LV is used.
Since reduce the message has informational character and doesn't lead
to exit of the command - reduce the log level to info print as we
use for other similar types.
Reindent next print message.
The special suspend/resume code in lv_remove for LVM1 snapshots was interpsersed
with a vg_commit call. However, while with LVM1 metadata, vg_commit is
technically a no-op, the activation code relied on the ondisk and incore
metadata being the same, since on LVM1, a "commit" happens in vg_write
already. Since the "ondisk" metadata was previously not available with format1
(and incore was silently used instead, via lvmcache), the problem was masked.
This patch adds the ability to set the minimum and maximum I/O rate for
sync operations in RAID LVs. The options are available for 'lvcreate' and
'lvchange' and are as follows:
--minrecoveryrate <Rate> [bBsSkKmMgG]
--maxrecoveryrate <Rate> [bBsSkKmMgG]
The rate is specified in size/sec/device. If a suffix is not given,
kiB/sec/device is assumed. Setting the rate to 0 removes the preference.
There is no point in creation of 2chunks snapshot,
since the snapshot is invalidated immeditelly with the first write
as there is no free chunk for COW blocks
(2 chunks are used by the snap header and the 1st. metadata chunk).
Enhance error message about the lowest usable size.
There are places where 'lv_is_active' was being used where it was
more correct to use 'lv_is_active_locally'. For example, when checking
for the existance of a kernel instance before asking for its status.
Most of the time these would work correctly. (RAID is only allowed on
non-clustered VGs at the moment, which means that 'lv_is_active' and
'lv_is_active_locally' would give the same result.) However, it is
more correct to use the proper variant and it helps with future
scenarios where targets might be allowed exclusively (or clustered) in
a cluster VG.
Support for exclusive activation of snapshots revealed some problems.
When snapshot is created, COW LV is activated first (for clearing) and
then it's transformed into snapshot's COW LV, but it has left the lock
for such LV active in cluster and this lock could not have been removed
from dlm, unless snapshot has been removed within same dlm session.
If the user tried to remove snapshot after rebooting node, the lock was
missing, and COW LV could not have been detached.
Patch modifes the approach in this way:
Always deactivate COW LV for clustered vg after clearing (so it's
activated again via imlicit snapshot activation rule when snapshot is activated).
When snapshot is removed, activate COW LV as independend LV, so the lock
will exist for such LV, but only when the snapshot is active.
Also add test case for testing snapshot removal after cluster reboot.
'lvchange' is used to alter a RAID 1 logical volume's write-mostly and
write-behind characteristics. The '--writemostly' parameter takes a
PV as an argument with an optional trailing character to specify whether
to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing
character is given, it will set the flag.
Synopsis:
lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv
Example:
lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv
The last character in the 'lv_attr' field is used to show whether a device
has the WriteMostly flag set. It is signified with a 'w'. If the device
has failed, the 'p'artial flag has priority.
Example ("nosync" raid1 with mismatch_cnt and writemostly):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg Rwi---r-m 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m
Example (raid1 with mismatch_cnt, writemostly - but failed drive):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg rwi---r-p 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m
A new reportable field has been added for writebehind as well. If
write-behind has not been set or the LV is not RAID1, the field will
be blank.
Example (writebehind is set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r-- 512
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Example (writebehind is not set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r--
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
We have been using 'mirror_region_size' in lvm.conf as the default region
size for RAID logical volumes as well as mirror logical volumes. Since,
"raid" is more inclusive and representative than "mirror", I have changed
the name of this setting. We must still check for the old setting and warn
the user if we are overriding it with the new setting if both happen to be
present.
Commit bf2741376d started to use
lv_is_active() instead of call for lv_info & info.exists so
we cover also cluster activated devices.
For snapshost the conversion was not correct and introduced
regression by blocking creation of snapshot of inactive LV.
Fix it by assigning lv_is_active() directly.
Note: we still have minor issue to fix - to make
lv_is_???? function able to return error states since
lv_info() may fail.
The 'copy_percent' function takes the 'extents_copied' field from each
segment in an LV to create the numerator for the ratio that is to
become the copy_percent. (Otherwise known as the 'sync' percent for
non-pvmove uses, like mirror LVs and RAID LVs.) This function safely
works on RAID - not just mirrors - so it is better to have it in
lv_manip.c rather than mirror.c.
There's a lot of different functions that do a lot of different things
in lv_manip.c, so I placed the function near a function in lv_manip.c
that it was close to in metadata-exported.h. Different placement in the
file or a different name for the function may be useful.
Use log_warn to print non-fatal warning messages.
Use of log_error would confuse checker for testing
whether proper error has been reported for some real error.
A message is printed when the region_size of a RAID LV is adjusted
to allow for large (> ~1TB) LVs. The message wasn't very clear.
Hopefully, this is better.
It would be possible to activate a RAID LV exclusively in a cluster
volume group, but for now we do not allow RAID LVs to exist in a
clustered volume group at all. This has two components:
1) Do not allow RAID LVs to be created in a clustered VG
2) Do not allow changing a VG from single-machine to clustered
if there are RAID LVs present.
MD's bitmaps can handle 2^21 regions at most. The RAID code has always
used a region_size of 1024 sectors. That means the size of a RAID LV was
limited to 1TiB. (The user can adjust the region_size when creating a
RAID LV, which can affect the maximum size.) Thus, creating, extending or
converting to a RAID LV greater than 1TiB would result in a failure to
load the new device-mapper table.
Again, the size of the RAID LV is not limited by how much space is allocated
for the metadata area, but by the limitations of the MD bitmap. Therefore,
we must adjust the 'region_size' to ensure that the number of regions does
not exceed the limit. I've added code to do this when extending a RAID LV
(which covers 'create' and 'extend' operations) and when up-converting -
specifically from linear to RAID1.
It is necessary when creating a RAID LV to clear the new metadata areas.
Failure to do so could result in a prepopulated bitmap that would cause
the new array to skip syncing portions of the array. It is a requirement
that the metadata LVs be activated and cleared in the process of creating.
However in test mode, this requirement should be lifted - no new LVs should
be created or written to.
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.
This patch adds support for RAID10. It is not the default at this
stage. The user needs to specify '--type raid10' if they would like
RAID10 instead of stacked mirror over stripe.
Commit 8767435ef8 allowed RAID 4/5/6
LV to be extended properly, but introduced a regression in device
replacement - a critical component of fault tolerance.
When only 1 or 2 drives are being replaced, the 'area_count' needed
can be equal to the parity_count. The 'area_multiple' for RAID 4/5/6
was computed as 'area_count - parity_devs', which could result in
'area_multiple' being 0. This would ultimately lead to a division by
zero error. Therefore, in calc_area_multiple, it is important to take
into account the number of areas that are being requested - just as
we already do in _alloc_init.
Reducing a RAID 4/5/6 LV or extending it with a different number of
stripes is still not implemented. This patch covers the "simple" case
where the LV is extended with the same number of stripes as the orginal.
If _alloc_parallel_area for raid devices chooses an area already used
up, it doesn't notice that it has no space left in it and leaves
later code trying to place a zero-length area into the LV.
https://bugzilla.redhat.com/832596
One can use "lvcreate --aay" to have the newly created volume
activated or not activated based on the activation/auto_activation_volume_list
this way.
Note: -Z/--zero is not compatible with -aay, zeroing is not used in this case!
When using lvcreate -aay, a default warning message is also issued that zeroing
is not done.
Update release_lv_segment_area not to discard any PV extents,
as it also gets used when moving extents between LVs.
Instead, call a new function release_and_discard_lv_segment_area() in
the two places where data should be discarded - lv_reduce() and
remove_mirrors_from_segments().
When mirrors are up-converted, a transient mirror layer is put in so that
only the new devices are sync'ed. That transient layer must carry the tags
of the original mirror LV, otherwise it will fail to activate when activation
is regulated by lvm.conf:activation/volume_list. The conversion would then
fail.
The fix is to do exactly the same thing that is being done for linear ->
mirror converting (lib/metadata/mirror.c:_init_mirror_log()). We copy the
tags temporarily for the new LV and remove them after the activation.
Snapshots of RAID logical volumes are allowed (including "raid1"). However,
snapshots of "mirror" logical volumes has been disallowed due to unsolvable
issues inherent to the design. The fact that mirroring (dm-raid1.c) must
stop all I/O as the result of a failure and wait for userspace intervention
can lead to a circular dependency if userspace is simultaneously waiting for
snapshots (on mirrors) to make an I/O update before proceeding.
Various snapshot on mirror tests have been removed as a result.
If the thin pool has disabled zeroing (created with -Zn), we at least
clear initial 4KiB of such thin volume (provisions 1st block).
If lvcreate is executed with '-an' command will abort (same way like we for
normal LV - however for normal LV option -Zn may skip clearing completely,
for thin volumes this option is not supported (applies only for pools).
The code fail to account for the case where we just need a single device
in a RAID 4/5/6 array. There is no good way to tell the allocation functions
that we don't need parity devices when we are allocating just a single device.
So, I've used a bit of a hack. If we are allocating an area_count that is <=
the parity count, then we can assume we are simply allocating a replacement
device (i.e. no need to include parity devices in the calculations). This
should make sense in most cases. If we need to allocate replacement devices
due to failure (or moving), we will never allocate more than the parity count;
or we would cause the array to become unusable. If we are creating a new device,
we should always create more stripes than parity devices.
Read lvm.conf setting for monitoring for each command. So we should not
activate monitoring if the default compilation is set to monitor during
lvconvert commnads.
Patch also removes check for clustered VG and allows to disable monitoring
for clustered VG with the assumption, the problem with monitoring and dmeventd
flag passing for INGNORE is already fixed.
Before removing thin pool LV always make sure, stacked message
for previous run are cleared - but allow to remove any
device that should have been created
(i.e. creation of snapshot failed - so the message for snapshot creation
may be replaced with delete message within unfinished transaction).
Also commit messages after lv remove - so free space is released in pool.
Since snapshot needs to suspend origin - it might lead to pool userspace
deadlock (as the pool will wait for new space in case it would be overfilled,
but dmeventd would not be able to resize it, as the lvcreate operation would
have kept the VG lock.)
To minimize the risk of such scenario - we prevent to create new snapshot
in case we are over the threshold - but beware, there is still small timewindow,
so keep threshold at some reasonable level!
Basic support to keep info when the LV was created.
Host and time is stored into LV mda section.
FIXME: Current version doesn't support configurable string via lvm.conf
and used fixed version strftime "%Y-%m-%d %T %z".
Removal of an inactive origin removes also all related snapshots.
When we now support 'old' external snapshots with thin volumes,
removal of pool will not only drop all thin volumes, but as
a consequence also all snapshots - which might be seen a bit
unexpected for the user - so add a query to confirm such action.
lvremove -f will skip the prompt.
Update region_size only for mirror and raid targets.
This fixes warning messages when vg is using small
extent size like 1KiB and no mirror/raid is created,
but the user still got the message:
$> vgcreate -s 1K vg <pvs>
$> lvcreate -L10K vg
Using reduced mirror region size of 4 sectors
If the extent_size is smaller then the chunk_size we may try
to find better aligment (wasting less space).
i.e. using 4KB extent_size and 64KB chunk size will
lead to creation of 64KB aligned thin volume.
Support allocation of metadata from the same PV, if the VG
is build only from one PV.
As thinp is not mirror - we do not require 2 PVs
for basic thin usage as user is losing only perfomance.
Replace detach_pool_messages with update_pool_lv.
Move creation code from to 'if' condition into 1.
Ensure creation has finished all previous message operations.
All thins are created with the next activation and VG is updated
without messages. Only some basic commands works.
(i.e. lvcreate -an -V10 -T mvg/pool)
There can be some combination to confuse this system.
This functionality for snapshots is going to be interesting.
If something fails during creation of thin LV remove such LV
and deactivate in case it's been already tried to activate
(i.e. thin kernel driver fails for some reason.)
To ensure we properly handle LV cluster locking - explicitely do
not allow to change the availability of the thin pool that is in use
for some thin LV.
As soon as the thin volume is created the only way to activate pool
is via implicit dependency.
Ignore thinpool open count for lv/vgchange operations.
Before adding a new virtual segment to LV, check first whether
the last segment isn't already of the same type. In this case
extend last segment instead of creating the new one.
Thin volumes should have always only 1 virtual segment, but it
helps also to virtual snapshot or error segtype..
Since thin is not able to use _lv_insert_empty_sublvs,
remove its appearence from this function.
Start to use extend_pool() function for desired functionality
and modify lv_extend() for this.
This function could be useful for other _manip source files.
Use dm_list manipulation function for provided functionality,
which make the code more readable and avoid touching list
internal details here.
Couple FIXMEs put into the code for parts of the code which may be
improved later, since we might be able to add 'lazy' device creation later.
For now require exclusive activation.
lvm part of messaging.
Each message is now stored it's own thin pool section:
message1 {
create = lv
}
Messages are queued to thin pool dm target when this target
is going to be resumed or used through some dependency.
Currently 'delete' message are purely queued and processed
with next thin pool resume operation (i.e. create_thin).
WARNING - thin provisioning support is developmental code.
This patch allows a mirror to be extended without an initial resync of the
extended portion. It compliments the existing '--nosync' option to lvcreate.
This action can be done implicitly if the mirror was created with the '--nosync'
option, or explicitly if the '--nosync' option is used when extending the device.
Here are the operational criteria:
1) A mirror created with '--nosync' should extend with 'nosync' implicitly
[EXAMPLE]# lvs vg; lvextend -L +5G vg/lv ; lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg Mwi-a-m- 5.00g lv_mlog 100.00
Extending 2 mirror images.
Extending logical volume lv to 10.00 GiB
Logical volume lv successfully resized
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg Mwi-a-m- 10.00g lv_mlog 100.00
2) The 'M' attribute ('M' signifies a mirror created with '--nosync', while 'm'
signifies a mirror created w/o '--nosync') must be preserved when extending a
mirror created with '--nosync'. See #1 for example of 'M' attribute.
3) A mirror created without '--nosync' should extend with 'nosync' only when
'--nosync' is explicitly used when extending.
[EXAMPLE]# lvs vg; lvextend -L +5G vg/lv; lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg mwi-a-m- 20.00m lv_mlog 100.00
Extending 2 mirror images.
Extending logical volume lv to 5.02 GiB
Logical volume lv successfully resized
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg mwi-a-m- 5.02g lv_mlog 0.39
vs.
[EXAMPLE]# lvs vg; lvextend -L +5G vg/lv --nosync; lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg mwi-a-m- 20.00m lv_mlog 100.00
Extending 2 mirror images.
Extending logical volume lv to 5.02 GiB
Logical volume lv successfully resized
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg Mwi-a-m- 5.02g lv_mlog 100.00
4) The 'm' attribute must change to 'M' when extending a mirror created without
'--nosync' is extended with the '--nosync' option. (See #3 examples above.)
5) An inactive mirror's sync percent cannot be determined definitively, so it
must not be allowed to skip resync. Instead, the extend should ask the user if
they want to extend while performing a resync.
[EXAMPLE]# lvchange -an vg/lv
[EXAMPLE]# lvextend -L +5G vg/lv
Extending 2 mirror images.
Extending logical volume lv to 10.00 GiB
vg/lv is not active. Unable to get sync percent.
Do full resync of extended portion of vg/lv? [y/n]: y
Logical volume lv successfully resized
6) A mirror that is performing recovery (as opposed to an initial sync) - like
after a failure - is not allowed to extend with either an implicit or
explicit nosync option. [You can simulate this with a 'corelog' mirror because
when it is reactivated, it must be recovered every time.]
[EXAMPLE]# lvcreate -m1 -L 5G -n lv vg --nosync --corelog
WARNING: New mirror won't be synchronised. Don't read what you didn't write!
Logical volume "lv" created
[EXAMPLE]# lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg Mwi-a-m- 5.00g 100.00
[EXAMPLE]# lvchange -an vg/lv; lvchange -ay vg/lv; lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
lv vg Mwi-a-m- 5.00g 0.08
[EXAMPLE]# lvextend -L +5G vg/lv
Extending 2 mirror images.
Extending logical volume lv to 10.00 GiB
vg/lv cannot be extended while it is recovering.
7) If 'no' is selected in #5 or if the condition in #6 is hit, it should not
result in the mirror being resized or the 'm/M' attribute being changed.
NOTE: A mirror created with '--nosync' behaves differently than one created
without it when performing an extension. The former cannot be extended when
the mirror is recovering (unless in-active), while the latter can. This is
a reasonable thing to do since recovery of a mirror doesn't take long (at
least in the case of an on-disk log) and it would cause far more time in
degraded mode if the extension w/o '--nosync' was allowed. It might be
reasonable to add the ability to force the operation in the future. This
should /not/ force a nosync extension, but rather force a sync'ed extension.
IOW, the user would be saying, "Yes, yes... I know recovery won't take long
and that I'll be adding significantly to the time spent in degraded mode, but
I need the extra space right now!".