IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If truncated CDAT entries are received from a device, the concatenation
of those entries constitutes a corrupt CDAT, yet is happily exposed to
user space.
Avoid by verifying response lengths and erroring out if truncation is
detected.
The last CDAT entry may still be truncated despite the checks introduced
herein if the length in the CDAT header is too small. However, that is
easily detectable by user space because it reaches EOF prematurely.
A subsequent commit which rightsizes the CDAT response allocation closes
that remaining loophole.
The two lines introduced here which exceed 80 chars are shortened to
less than 80 chars by a subsequent commit which migrates to a
synchronous DOE API and replaces "t.task.rv" by "rc".
The existing acpi_cdat_header and acpi_table_cdat struct definitions
provided by ACPICA cannot be used because they do not employ __le16 or
__le32 types. I believe that cannot be changed because those types are
Linux-specific and ACPI is specified for little endian platforms only,
hence doesn't care about endianness. So duplicate the structs.
Fixes: c97006046c ("cxl/port: Read CDAT table")
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: stable@vger.kernel.org # v6.0+
Link: https://lore.kernel.org/r/bce3aebc0e8e18a1173425a7a865b232c3912963.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
cxl_cdat_get_length() only checks whether the DOE response size is
sufficient for the Table Access response header (1 dword), but not the
succeeding CDAT header (1 dword length plus other fields).
It thus returns whatever uninitialized memory happens to be on the stack
if a truncated DOE response with only 1 dword was received. Fix it.
Fixes: c97006046c ("cxl/port: Read CDAT table")
Reported-by: Ming Li <ming4.li@intel.com>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ming Li <ming4.li@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: stable@vger.kernel.org # v6.0+
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lore.kernel.org/r/000e69cd163461c8b1bc2cf4155b6e25402c29c7.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
struct bus_type should never be modified in a sysfs callback as there is
nothing in the structure to modify, and frankly, the structure is almost
never used in a sysfs callback, so mark it as constant to allow struct
bus_type to be moved to read-only memory.
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Harald Freudenberger <freude@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Hu Haowen <src.res@email.cn>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Laurentiu Tudor <laurentiu.tudor@nxp.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: Stuart Yoder <stuyoder@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Acked-by: Ilya Dryomov <idryomov@gmail.com> # rbd
Acked-by: Ira Weiny <ira.weiny@intel.com> # cxl
Reviewed-by: Alex Shi <alexs@kernel.org>
Acked-by: Iwona Winiarska <iwona.winiarska@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # pci
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com> # scsi
Link: https://lore.kernel.org/r/20230313182918.1312597-23-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The CDAT exposed in sysfs differs between little endian and big endian
arches: On big endian, every 4 bytes are byte-swapped.
PCI Configuration Space is little endian (PCI r3.0 sec 6.1). Accessors
such as pci_read_config_dword() implicitly swap bytes on big endian.
That way, the macros in include/uapi/linux/pci_regs.h work regardless of
the arch's endianness. For an example of implicit byte-swapping, see
ppc4xx_pciex_read_config(), which calls in_le32(), which uses lwbrx
(Load Word Byte-Reverse Indexed).
DOE Read/Write Data Mailbox Registers are unlike other registers in
Configuration Space in that they contain or receive a 4 byte portion of
an opaque byte stream (a "Data Object" per PCIe r6.0 sec 7.9.24.5f).
They need to be copied to or from the request/response buffer verbatim.
So amend pci_doe_send_req() and pci_doe_recv_resp() to undo the implicit
byte-swapping.
The CXL_DOE_TABLE_ACCESS_* and PCI_DOE_DATA_OBJECT_DISC_* macros assume
implicit byte-swapping. Byte-swap requests after constructing them with
those macros and byte-swap responses before parsing them.
Change the request and response type to __le32 to avoid sparse warnings.
Per a request from Jonathan, replace sizeof(u32) with sizeof(__le32) for
consistency.
Fixes: c97006046c ("cxl/port: Read CDAT table")
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: stable@vger.kernel.org # v6.0+
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/3051114102f41d19df3debbee123129118fc5e6d.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
- CXL RAM region enumeration: instantiate 'struct cxl_region' objects
for platform firmware created memory regions
- CXL RAM region provisioning: complement the existing PMEM region
creation support with RAM region support
- "Soft Reservation" policy change: Online (memory hot-add)
soft-reserved memory (EFI_MEMORY_SP) by default, but still allow for
setting aside such memory for dedicated access via device-dax.
- CXL Events and Interrupts: Takeover CXL event handling from
platform-firmware (ACPI calls this CXL Memory Error Reporting) and
export CXL Events via Linux Trace Events.
- Convey CXL _OSC results to drivers: Similar to PCI, let the CXL
subsystem interrogate the result of CXL _OSC negotiation.
- Emulate CXL DVSEC Range Registers as "decoders": Allow for
first-generation devices that pre-date the definition of the CXL HDM
Decoder Capability to translate the CXL DVSEC Range Registers into
'struct cxl_decoder' objects.
- Set timestamp: Per spec, set the device timestamp in case of hotplug,
or if platform-firwmare failed to set it.
- General fixups: linux-next build issues, non-urgent fixes for
pre-production hardware, unit test fixes, spelling and debug message
improvements.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCY/WYcgAKCRDfioYZHlFs
Z6m3APkBUtiEEm1o8ikdu5llUS1OTLBwqjJDwGMTyf8X/WDXhgD+J2mLsCgARS7X
5IS0RAtefutrW5sQpUucPM7QiLuraAY=
=kOXC
-----END PGP SIGNATURE-----
Merge tag 'cxl-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
Pull Compute Express Link (CXL) updates from Dan Williams:
"To date Linux has been dependent on platform-firmware to map CXL RAM
regions and handle events / errors from devices. With this update we
can now parse / update the CXL memory layout, and report events /
errors from devices. This is a precursor for the CXL subsystem to
handle the end-to-end "RAS" flow for CXL memory. i.e. the flow that
for DDR-attached-DRAM is handled by the EDAC driver where it maps
system physical address events to a field-replaceable-unit (FRU /
endpoint device). In general, CXL has the potential to standardize
what has historically been a pile of memory-controller-specific error
handling logic.
Another change of note is the default policy for handling RAM-backed
device-dax instances. Previously the default access mode was "device",
mmap(2) a device special file to access memory. The new default is
"kmem" where the address range is assigned to the core-mm via
add_memory_driver_managed(). This saves typical users from wondering
why their platform memory is not visible via free(1) and stuck behind
a device-file. At the same time it allows expert users to deploy
policy to, for example, get dedicated access to high performance
memory, or hide low performance memory from general purpose kernel
allocations. This affects not only CXL, but also systems with
high-bandwidth-memory that platform-firmware tags with the
EFI_MEMORY_SP (special purpose) designation.
Summary:
- CXL RAM region enumeration: instantiate 'struct cxl_region' objects
for platform firmware created memory regions
- CXL RAM region provisioning: complement the existing PMEM region
creation support with RAM region support
- "Soft Reservation" policy change: Online (memory hot-add)
soft-reserved memory (EFI_MEMORY_SP) by default, but still allow
for setting aside such memory for dedicated access via device-dax.
- CXL Events and Interrupts: Takeover CXL event handling from
platform-firmware (ACPI calls this CXL Memory Error Reporting) and
export CXL Events via Linux Trace Events.
- Convey CXL _OSC results to drivers: Similar to PCI, let the CXL
subsystem interrogate the result of CXL _OSC negotiation.
- Emulate CXL DVSEC Range Registers as "decoders": Allow for
first-generation devices that pre-date the definition of the CXL
HDM Decoder Capability to translate the CXL DVSEC Range Registers
into 'struct cxl_decoder' objects.
- Set timestamp: Per spec, set the device timestamp in case of
hotplug, or if platform-firwmare failed to set it.
- General fixups: linux-next build issues, non-urgent fixes for
pre-production hardware, unit test fixes, spelling and debug
message improvements"
* tag 'cxl-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: (66 commits)
dax/kmem: Fix leak of memory-hotplug resources
cxl/mem: Add kdoc param for event log driver state
cxl/trace: Add serial number to trace points
cxl/trace: Add host output to trace points
cxl/trace: Standardize device information output
cxl/pci: Remove locked check for dvsec_range_allowed()
cxl/hdm: Add emulation when HDM decoders are not committed
cxl/hdm: Create emulated cxl_hdm for devices that do not have HDM decoders
cxl/hdm: Emulate HDM decoder from DVSEC range registers
cxl/pci: Refactor cxl_hdm_decode_init()
cxl/port: Export cxl_dvsec_rr_decode() to cxl_port
cxl/pci: Break out range register decoding from cxl_hdm_decode_init()
cxl: add RAS status unmasking for CXL
cxl: remove unnecessary calling of pci_enable_pcie_error_reporting()
dax/hmem: build hmem device support as module if possible
dax: cxl: add CXL_REGION dependency
cxl: avoid returning uninitialized error code
cxl/pmem: Fix nvdimm registration races
cxl/mem: Fix UAPI command comment
cxl/uapi: Tag commands from cxl_query_cmd()
...
Here is the large set of driver core changes for 6.3-rc1.
There's a lot of changes this development cycle, most of the work falls
into two different categories:
- fw_devlink fixes and updates. This has gone through numerous review
cycles and lots of review and testing by lots of different devices.
Hopefully all should be good now, and Saravana will be keeping a
watch for any potential regression on odd embedded systems.
- driver core changes to work to make struct bus_type able to be moved
into read-only memory (i.e. const) The recent work with Rust has
pointed out a number of areas in the driver core where we are
passing around and working with structures that really do not have
to be dynamic at all, and they should be able to be read-only making
things safer overall. This is the contuation of that work (started
last release with kobject changes) in moving struct bus_type to be
constant. We didn't quite make it for this release, but the
remaining patches will be finished up for the release after this
one, but the groundwork has been laid for this effort.
Other than that we have in here:
- debugfs memory leak fixes in some subsystems
- error path cleanups and fixes for some never-able-to-be-hit
codepaths.
- cacheinfo rework and fixes
- Other tiny fixes, full details are in the shortlog
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCY/ipdg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynL3gCgwzbcWu0So3piZyLiJKxsVo9C2EsAn3sZ9gN6
6oeFOjD3JDju3cQsfGgd
=Su6W
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.3-rc1.
There's a lot of changes this development cycle, most of the work
falls into two different categories:
- fw_devlink fixes and updates. This has gone through numerous review
cycles and lots of review and testing by lots of different devices.
Hopefully all should be good now, and Saravana will be keeping a
watch for any potential regression on odd embedded systems.
- driver core changes to work to make struct bus_type able to be
moved into read-only memory (i.e. const) The recent work with Rust
has pointed out a number of areas in the driver core where we are
passing around and working with structures that really do not have
to be dynamic at all, and they should be able to be read-only
making things safer overall. This is the contuation of that work
(started last release with kobject changes) in moving struct
bus_type to be constant. We didn't quite make it for this release,
but the remaining patches will be finished up for the release after
this one, but the groundwork has been laid for this effort.
Other than that we have in here:
- debugfs memory leak fixes in some subsystems
- error path cleanups and fixes for some never-able-to-be-hit
codepaths.
- cacheinfo rework and fixes
- Other tiny fixes, full details are in the shortlog
All of these have been in linux-next for a while with no reported
problems"
[ Geert Uytterhoeven points out that that last sentence isn't true, and
that there's a pending report that has a fix that is queued up - Linus ]
* tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (124 commits)
debugfs: drop inline constant formatting for ERR_PTR(-ERROR)
OPP: fix error checking in opp_migrate_dentry()
debugfs: update comment of debugfs_rename()
i3c: fix device.h kernel-doc warnings
dma-mapping: no need to pass a bus_type into get_arch_dma_ops()
driver core: class: move EXPORT_SYMBOL_GPL() lines to the correct place
Revert "driver core: add error handling for devtmpfs_create_node()"
Revert "devtmpfs: add debug info to handle()"
Revert "devtmpfs: remove return value of devtmpfs_delete_node()"
driver core: cpu: don't hand-override the uevent bus_type callback.
devtmpfs: remove return value of devtmpfs_delete_node()
devtmpfs: add debug info to handle()
driver core: add error handling for devtmpfs_create_node()
driver core: bus: update my copyright notice
driver core: bus: add bus_get_dev_root() function
driver core: bus: constify bus_unregister()
driver core: bus: constify some internal functions
driver core: bus: constify bus_get_kset()
driver core: bus: constify bus_register/unregister_notifier()
driver core: remove private pointer from struct bus_type
...
Device serial numbers are useful information for the user.
Add device serial numbers to all the trace points.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20230208-cxl-event-names-v2-3-fca130c2c68b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The host parameter of where the memdev is connected is useful
information.
Report host consistently in all trace points.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20230208-cxl-event-names-v2-2-fca130c2c68b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The trace points were written to take a struct device input for the
trace. In CXL multiple device objects are associated with each CXL
hardware device. Using different device objects in the trace point can
lead to confusion for users.
The PCIe device is nice to have, but the user space tooling relies on
the memory device naming. It is better to have those device names
reported.
Change all trace points to take struct cxl_memdev as a standard and
report that name.
Furthermore, standardize on the name 'memdev' in both
/sys/kernel/tracing/trace and cxl-cli monitor output.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20230208-cxl-event-names-v2-1-fca130c2c68b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pick up the CXL DVSEC range register emulation for v6.3, and resolve
conflicts with the cxl_port_probe() split (from for-6.3/cxl-ram-region)
and event handling (from for-6.3/cxl-events).
For the case where DVSEC range register(s) are active and HDM decoders are
not committed, use RR to provide emulation. A first pass is done to note
whether any decoders are committed. If there are no committed endpoint
decoders, then DVSEC ranges will be used for emulation.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640369536.935665.611974113442400127.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL rev3 spec 8.1.3
RCDs may not have HDM register blocks. Create a fake HDM with information
from the CXL PCIe DVSEC registers. The decoder count will be set to the
HDM count retrieved from the DVSEC cap register.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640368994.935665.15831225724059704620.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In the case where HDM decoder register block exists but is not programmed
and at the same time the DVSEC range register range is active, populate the
CXL decoder object 'cxl_decoder' with info from DVSEC range registers.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640368454.935665.13806415120298330717.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
With the previous refactoring of DVSEC range registers out of
cxl_hdm_decode_init(), it basically becomes a skeleton function. Squash
__cxl_hdm_decode_init() with cxl_hdm_decode_init() to simplify the code.
cxl_hdm_decode_init() now returns more error codes than just -EBUSY.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640367916.935665.12898404758336059003.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Call cxl_dvsec_rr_decode() in the beginning of cxl_port_probe() and
preserve the decoded information in a local
'struct cxl_endpoint_dvsec_info'. This info can be passed to various
functions later on in order to support the HDM decoder emulation.
The invocation of cxl_dvsec_rr_decode() in cxl_hdm_decode_init() is
removed and a pointer to the 'struct cxl_endpoint_dvsec_info' is passed
in.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640367377.935665.2848747799651019676.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
There are 2 scenarios that requires additional handling. 1. A device that
has active ranges in DVSEC range registers (RR) but no HDM decoder register
block. 2. A device that has both RR active and HDM, but the HDM decoders
are not programmed. The goal is to create emulated decoder software structs
based on the RR.
Move the CXL DVSEC range register decoding code block from
cxl_hdm_decode_init() to its own function. Refactor code in preparation for
the HDM decoder emulation. There is no functionality change to the code.
Name the new function to cxl_dvsec_rr_decode().
The only change is to set range->start and range->end to CXL_RESOURCE_NONE
and skipping the reading of base registers if the range size is 0, which
equates to range not active.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640366839.935665.11816388524993234329.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
By default the CXL RAS mask registers bits are defaulted to 1's and
suppress all error reporting. If the kernel has negotiated ownership
of error handling for CXL then unmask the mask registers by writing 0s.
PCI_EXP_DEVCTL capability is checked to see uncorrectable or correctable
errors bits are set before unmasking the respective errors.
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # pci_regs.h
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167639402301.778884.12556849214955646539.stgit@djiang5-mobl3.local
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
With this [1] commit upstream, pci_enable_pci_error_report() is no longer
necessary for the driver to call. Remove call and related cleanups.
[1]: f26e58bf6f ("PCI/AER: Enable error reporting when AER is native")
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167632012093.4153151.5360778069735064322.stgit@djiang5-mobl3.local
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The new cxl_add_to_region() function returns an uninitialized
value on success:
drivers/cxl/core/region.c:2628:6: error: variable 'rc' is used uninitialized whenever 'if' condition is false [-Werror,-Wsometimes-uninitialized]
if (IS_ERR(cxlr)) {
^~~~~~~~~~~~
drivers/cxl/core/region.c:2654:9: note: uninitialized use occurs here
return rc;
Simplify the logic to have the rc variable always initialized in the
same place.
Fixes: a32320b71f ("cxl/region: Add region autodiscovery")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20230213101220.3821689-1-arnd@kernel.org
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A loop of the form:
while true; do modprobe cxl_pci; modprobe -r cxl_pci; done
...fails with the following crash signature:
BUG: kernel NULL pointer dereference, address: 0000000000000040
[..]
RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_pmem_ctl+0x121/0x240 [cxl_pmem]
nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm]
nd_label_data_init+0x135/0x7e0 [libnvdimm]
nvdimm_probe+0xd6/0x1c0 [libnvdimm]
nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__device_attach_driver+0x85/0x110
bus_for_each_drv+0x7d/0xc0
__device_attach+0xb4/0x1e0
bus_probe_device+0x9f/0xc0
device_add+0x445/0x9c0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x30/0x130
...namely that the bottom half of async nvdimm device registration runs
after the CXL has already torn down the context that cxl_pmem_ctl()
needs. Unlike the ACPI NFIT case that benefits from launching multiple
nvdimm device registrations in parallel from those listed in the table,
CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a
synchronous registration path to preclude this scenario.
Fixes: 21083f5152 ("cxl/pmem: Register 'pmem' / cxl_nvdimm devices")
Cc: <stable@vger.kernel.org>
Reported-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Include the support for enumerating and provisioning ram regions for
v6.3. This also include a default policy change for ram / volatile
device-dax instances to assign them to the dax_kmem driver by default.
It was pointed out that commands not supported by the device or excluded
by the kernel were being returned in cxl_query_cmd().[1]
While libcxl correctly handles failing commands, it is more efficient to
not issue an invalid command in the first place. This can't be done
without additional information being returned from cxl_query_cmd(). In
addition, information about the availability of commands can be useful
for debugging.
Add flags to struct cxl_command_info which reflect if a command is
enabled and/or exclusive to the kernel.
[1] https://lore.kernel.org/all/63b4ec4e37cc1_5178e2941d@dwillia2-xfh.jf.intel.com.notmuch/
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221222-cxl-misc-v4-3-62f701c1cdd1@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL_CMD_FLAG_NONE is not used, remove it.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221222-cxl-misc-v4-1-62f701c1cdd1@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While platform firmware takes some responsibility for mapping the RAM
capacity of CXL devices present at boot, the OS is responsible for
mapping the remainder and hot-added devices. Platform firmware is also
responsible for identifying the platform general purpose memory pool,
typically DDR attached DRAM, and arranging for the remainder to be 'Soft
Reserved'. That reservation allows the CXL subsystem to route the memory
to core-mm via memory-hotplug (dax_kmem), or leave it for dedicated
access (device-dax).
The new 'struct cxl_dax_region' object allows for a CXL memory resource
(region) to be published, but also allow for udev and module policy to
act on that event. It also prevents cxl_core.ko from having a module
loading dependency on any drivers/dax/ modules.
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167602003896.1924368.10335442077318970468.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Take two endpoints attached to the first switch on the first host-bridge
in the cxl_test topology and define a pre-initialized region. This is a
x2 interleave underneath a x1 CXL Window.
$ modprobe cxl_test
$ # cxl list -Ru
{
"region":"region3",
"resource":"0xf010000000",
"size":"512.00 MiB (536.87 MB)",
"interleave_ways":2,
"interleave_granularity":4096,
"decode_state":"commit"
}
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167602000547.1924368.11613151863880268868.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Region autodiscovery is an asynchronous state machine advanced by
cxl_port_probe(). After the decoders on an endpoint port are enumerated
they are scanned for actively enabled instances. Each active decoder is
flagged for auto-assembly CXL_DECODER_F_AUTO and attached to a region.
If a region does not already exist for the address range setting of the
decoder one is created. That creation process may race with other
decoders of the same region being discovered since cxl_port_probe() is
asynchronous. A new 'struct cxl_root_decoder' lock, @range_lock, is
introduced to mitigate that race.
Once all decoders have arrived, "p->nr_targets == p->interleave_ways",
they are sorted by their relative decode position. The sort algorithm
involves finding the point in the cxl_port topology where one leg of the
decode leads to deviceA and the other deviceB. At that point in the
topology the target order in the 'struct cxl_switch_decoder' indicates
the relative position of those endpoint decoders in the region.
>From that point the region goes through the same setup and validation
steps as user-created regions, but instead of programming the decoders
it validates that driver would have written the same values to the
decoders as were already present.
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601999958.1924368.9366954455835735048.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Jonathan points out that the shared code between the switch and endpoint
case is small. Before adding another is_cxl_endpoint() conditional,
just split the two cases.
Rather than duplicate the "Couldn't enumerate decoders" error message
take the opportunity to improve the error messages in
devm_cxl_enumerate_decoders().
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601999378.1924368.15071142145866277623.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add help text and a label so the CXL_REGION config option can be
toggled. This is mainly to enable compile testing without region
support.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601998765.1924368.258370414771847699.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In support of the CXL subsystem's use of 'struct range' to track decode
address ranges, add a common range_contains() implementation with
identical semantics as resource_contains();
The existing 'range_contains()' in lib/stackinit_kunit.c is namespaced
with a 'stackinit_' prefix.
Cc: Kees Cook <keescook@chromium.org>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601998163.1924368.6067392174077323935.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for region autodiscovery, that needs all devices
discovered before their relative position in the region can be
determined, consolidate all position dependent validation in a helper.
Recall that in the on-demand region creation flow the end-user picks the
position of a given endpoint decoder in a region. In the autodiscovery
case the position of an endpoint decoder can only be determined after
all other endpoint decoders that claim to decode the region's address
range have been enumerated and attached. So, in the autodiscovery case
endpoint decoders may be attached before their relative position is
known. Once all decoders arrive, then positions can be determined and
validated with cxl_region_validate_position() the same as user initiated
on-demand creation.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601997584.1924368.4615769326126138969.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Region autodiscovery is the process of kernel creating 'struct
cxl_region' object to represent active CXL memory ranges it finds
already active in hardware when the driver loads. Typically this happens
when platform firmware establishes CXL memory regions and then publishes
them in the memory map. However, this can also happen in the case of
kexec-reboot after the kernel has created regions.
In the autodiscovery case the region creation process starts with a
known endpoint decoder. Refactor attach_target() into a helper that is
suitable to be called from either sysfs, for runtime region creation, or
from cxl_port_probe() after it has enumerated all endpoint decoders.
The cxl_port_probe() context is an async device-core probing context, so
it is not appropriate to allow SIGTERM to interrupt the assembly
process. Refactor attach_target() to take @cxled and @state as arguments
where @state indicates whether waiting from the region rwsem is
interruptible or not.
No behavior change is intended.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601996393.1924368.2202255054618600069.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Expand the region creation infrastructure to enable 'ram'
(volatile-memory) regions. The internals of create_pmem_region_store()
and create_pmem_region_show() are factored out into helpers
__create_region() and __create_region_show() for the 'ram' case to
reuse.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601995775.1924368.352616146815830591.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for a new region mode, do not, for example, allow
'ram' decoders to be assigned to 'pmem' regions and vice versa.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601995111.1924368.7459128614177994602.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Shipping versions of the cxl-cli utility expect all regions to have a
'uuid' attribute. In preparation for 'ram' regions, update the 'uuid'
attribute to return an empty string which satisfies the current
expectations of 'cxl list -R'. Otherwise, 'cxl list -R' fails in the
presence of regions with the 'uuid' attribute missing. Force the
attribute to be read-only as there is no facility or expectation for a
'ram' region to recall its uuid from one boot to the next.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601994558.1924368.12612811533724694444.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for a new region type, "ram" regions, add a mode
attribute to clarify the mode of the decoders that can be added to a
region. Share the internals of mode_show() (for decoders) with the
region case.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601993930.1924368.4305018565539515665.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Testing of ram region support [1], stimulates a long standing bug in
cxl_detach_ep() where some cxl_ep_remove() cleanup is skipped due to
inability to walk ports after dports have been unregistered. That
results in a failure to re-register a memdev after the port is
re-enabled leading to a crash like the following:
cxl_port_setup_targets: cxl region4: cxl_host_bridge.0:port4 iw: 1 ig: 256
general protection fault, ...
[..]
RIP: 0010:cxl_region_setup_targets+0x897/0x9e0 [cxl_core]
dev_name at include/linux/device.h:700
(inlined by) cxl_port_setup_targets at drivers/cxl/core/region.c:1155
(inlined by) cxl_region_setup_targets at drivers/cxl/core/region.c:1249
[..]
Call Trace:
<TASK>
attach_target+0x39a/0x760 [cxl_core]
? __mutex_unlock_slowpath+0x3a/0x290
cxl_add_to_region+0xb8/0x340 [cxl_core]
? lockdep_hardirqs_on+0x7d/0x100
discover_region+0x4b/0x80 [cxl_port]
? __pfx_discover_region+0x10/0x10 [cxl_port]
device_for_each_child+0x58/0x90
cxl_port_probe+0x10e/0x130 [cxl_port]
cxl_bus_probe+0x17/0x50 [cxl_core]
Change the port ancestry walk to be by depth rather than by dport. This
ensures that even if a port has unregistered its dports a deferred
memdev cleanup will still be able to cleanup the memdev's interest in
that port.
The parent_port->dev.driver check is only needed for determining if the
bottom up removal beat the top-down removal, but cxl_ep_remove() can
always proceed given the port is pinned. That is, the two sources of
cxl_ep_remove() are in cxl_detach_ep() and cxl_port_release(), and
cxl_port_release() can not run if cxl_detach_ep() holds a reference.
Fixes: 2703c16c75 ("cxl/core/port: Add switch port enumeration")
Link: http://lore.kernel.org/r/167564534874.847146.5222419648551436750.stgit@dwillia2-xfh.jf.intel.com [1]
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/167601992789.1924368.8083994227892600608.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For ID allocations we want 0-(max-1), ie: smatch complains:
error: Calling ida_alloc_range() with a 'max' argument which is a power of 2. -1 missing?
Correct this and also replace the call to use the max() flavor instead.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230208181944.240261-1-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Merge the general CXL updates with fixes targeting v6.2-rc for v6.3.
Resolve a conflict with the fix and move of cxl_report_and_clear() from
pci.c to core/pci.c.
A passthrough decoder is a decoder that maps only 1 target. It is a
special case because it does not impose any constraints on the
interleave-math as compared to a decoder with multiple targets. Extend
the passthrough case to multi-target-capable decoders that only have one
target selected. I.e. the current code was only considering passthrough
*ports* which are only a subset of the potential passthrough decoder
scenarios.
Fixes: e4f6dfa9ef ("cxl/region: Fix 'distance' calculation with passthrough ports")
Cc: <stable@vger.kernel.org>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167564540422.847146.13816934143225777888.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Not all decoders have a reset callback.
The CXL specification allows a host bridge with a single root port to
have no explicit HDM decoders. Currently the region driver assumes there
are none. As such the CXL core creates a special pass through decoder
instance without a commit/reset callback.
Prior to this patch, the ->reset() callback was called unconditionally when
calling cxl_region_decode_reset. Thus a configuration with 1 Host Bridge,
1 Root Port, and one directly attached CXL type 3 device or multiple CXL
type 3 devices attached to downstream ports of a switch can cause a null
pointer dereference.
Before the fix, a kernel crash was observed when we destroy the region, and
a pass through decoder is reset.
The issue can be reproduced as below,
1) create a region with a CXL setup which includes a HB with a
single root port under which a memdev is attached directly.
2) destroy the region with cxl destroy-region regionX -f.
Fixes: 176baefb2e ("cxl/hdm: Commit decoder state to hardware")
Cc: <stable@vger.kernel.org>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Link: https://lore.kernel.org/r/20221215170909.2650271-1-fan.ni@samsung.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The IRQ core expects that users of the default hardirq handler specify
IRQF_ONESHOT to keep interrupts disabled until the threaded handler
runs. That meets the CXL driver's expectations since it is an edge
triggered MSI and this flag would have been passed by default using
pci_request_irq() instead of devm_request_threaded_irq().
Fixes: a49aa8141b ("cxl/mem: Wire up event interrupts")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Julia Lawall <julia.lawall@lip6.fr>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL r3.0 section 8.2.9.4.2 "Set Timestamp" recommends that the host sets
the timestamp after every Conventional or CXL Reset to ensure accurate
timestamps. This should include on initial boot up. The time base that
is being set is used by a device for the poison list overflow timestamp
and all event timestamps. Note that the command is optional and if
not supported and the device cannot return accurate timestamps it will
fill the fields in with an appropriate marker (see the specification
description of each timestamp).
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230130151327.32415-1-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Kernel-doc should be complete, so add documentation for the status
parameter.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230130153437.3153-1-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Commit 2aeaf663b8 introduced strict checking for variable length
payload size validation. The payload length of received data must
match the size of the requested data by the caller except for the case
where the min_out value is set.
The Get Log command does not have a header with a length field set.
The Log size is determined by the Get Supported Logs command (CXL 3.0,
8.2.9.5.1). However, the actual size can be smaller and the number of
valid bytes in the payload output must be determined reading the
Payload Length field (CXL 3.0, Table 8-36, Note 2).
Two issues arise: The command can successfully complete with a payload
length of zero. And, the valid payload length must then also be
consumed by the caller.
Change cxl_xfer_log() to pass the number of payload bytes back to the
caller to determine the number of log entries. Implement the payload
handling as a special case where mbox_cmd->size_out is consulted when
cxl_internal_send_cmd() returns -EIO. A WARN_ONCE() is added to check
that -EIO is only returned in case of an unexpected output size.
Logs can be bigger than the maximum payload length and multiple Get
Log commands can be issued. If the received payload size is smaller
than the maximum payload size we can assume all valid bytes have been
fetched. Stop sending further Get Log commands then.
On that occasion, change debug messages to also report the opcodes of
supported commands.
The variable payload commands GET_LSA and SET_LSA are not affected by
this strict check: SET_LSA cannot be broken because SET_LSA does not
return an output payload, and GET_LSA never expects short reads.
Fixes: 2aeaf663b8 ("cxl/mbox: Add variable output size validation for internal commands")
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230119094934.86067-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The uevent() callback in struct bus_type should not be modifying the
device that is passed into it, so mark it as a const * and propagate the
function signature changes out into all relevant subsystems that use
this callback.
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20230111113018.459199-16-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The devnode() callback in struct device_type should not be modifying the
device that is passed into it, so mark it as a const * and propagate the
function signature changes out into all relevant subsystems that use
this callback.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Jeremy Kerr <jk@ozlabs.org>
Cc: Joel Stanley <joel@jms.id.au>
Cc: Alistar Popple <alistair@popple.id.au>
Cc: Eddie James <eajames@linux.ibm.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jilin Yuan <yuanjilin@cdjrlc.com>
Cc: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Won Chung <wonchung@google.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20230111113018.459199-7-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
CXL rev 3.0 section 8.2.9.2.1.3 defines the Memory Module Event Record.
Determine if the event read is memory module record and if so trace the
record.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-5-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL rev 3.0 section 8.2.9.2.1.2 defines the DRAM Event Record.
Determine if the event read is a DRAM event record and if so trace the
record.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-4-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL rev 3.0 section 8.2.9.2.1.1 defines the General Media Event Record.
Determine if the event read is a general media record and if so trace
the record as a General Media Event Record.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-3-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently the only CXL features targeted for irq support require their
message numbers to be within the first 16 entries. The device may
however support less than 16 entries depending on the support it
provides.
Attempt to allocate these 16 irq vectors. If the device supports less
then the PCI infrastructure will allocate that number. Upon successful
allocation, users can plug in their respective isr at any point
thereafter.
CXL device events are signaled via interrupts. Each event log may have
a different interrupt message number. These message numbers are
reported in the Get Event Interrupt Policy mailbox command.
Add interrupt support for event logs. Interrupts are allocated as
shared interrupts. Therefore, all or some event logs can share the same
message number.
In addition all logs are queried on any interrupt in order of the most
to least severe based on the status register.
Finally place all event configuration logic into cxl_event_config().
Previously the logic was a simple 'read all' on start up. But
interrupts must be configured prior to any reads to ensure no events are
missed. A single event configuration function results in a cleaner over
all implementation.
Cc: Bjorn Helgaas <helgaas@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Co-developed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-2-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Only unsupported mailbox commands are reported in debug messages. A
list of enabled commands is useful too. Change debug messages to also
report the opcodes of enabled commands. Esp. if card initialization
fails there is no way to get this information from userland.
On that occasion also add missing trailing newlines.
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230125085728.234697-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL devices have multiple event logs which can be queried for CXL event
records. Devices are required to support the storage of at least one
event record in each event log type.
Devices track event log overflow by incrementing a counter and tracking
the time of the first and last overflow event seen.
Software queries events via the Get Event Record mailbox command; CXL
rev 3.0 section 8.2.9.2.2 and clears events via CXL rev 3.0 section
8.2.9.2.3 Clear Event Records mailbox command.
If the result of negotiating CXL Error Reporting Control is OS control,
read and clear all event logs on driver load.
Ensure a clean slate of events by reading and clearing the events on
driver load.
The status register is not used because a device may continue to trigger
events and the only requirement is to empty the log at least once. This
allows for the required transition from empty to non-empty for interrupt
generation. Handling of interrupts is in a follow on patch.
The device can return up to 1MB worth of event records per query.
Allocate a shared large buffer to handle the max number of records based
on the mailbox payload size.
This patch traces a raw event record and leaves specific event record
type tracing to subsequent patches. Macros are created to aid in
tracing the common CXL Event header fields.
Each record is cleared explicitly. A clear all bit is specified but is
only valid when the log overflows.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-1-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The cxl_pmem.ko module houses the driver for both cxl_nvdimm_bridge
objects and cxl_nvdimm objects. When the core creates a cxl_nvdimm it
arranges for it to be autoremoved when the bridge goes down. However, if
the bridge never initialized because the cxl_pmem.ko module never
loaded, it sets up a the following crash scenario:
BUG: kernel NULL pointer dereference, address: 0000000000000478
[..]
RIP: 0010:cxl_nvdimm_probe+0x99/0x140 [cxl_pmem]
[..]
Call Trace:
<TASK>
cxl_bus_probe+0x17/0x50 [cxl_core]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__driver_attach+0xd2/0x1c0
bus_for_each_dev+0x79/0xc0
bus_add_driver+0x1b1/0x200
driver_register+0x89/0xe0
cxl_pmem_init+0x50/0xff0 [cxl_pmem]
It turns out the recent rework to simplify nvdimm probing obviated the
need to unregister cxl_nvdimm objects at cxl_nvdimm_bridge ->remove()
time. Leave the cxl_nvdimm device registered until the hosting
cxl_memdev departs. The alternative is that the cxl_memdev needs to be
reattached whenever the cxl_nvdimm_bridge attach state cycles, which is
awkward and unnecessary.
The only requirement is to make sure that when the cxl_nvdimm_bridge
goes away any dependent cxl_nvdimm objects are shutdown. Handle that in
unregister_nvdimm_bus().
With these registration entanglements removed there is no longer a need
to pre-load the cxl_pmem module in cxl_acpi.
Fixes: cb9cfff82f ("cxl/acpi: Simplify cxl_nvdimm_bridge probing")
Reported-by: Gregory Price <gregory.price@memverge.com>
Debugged-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167426077263.3955046.9695309346988027311.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Similar to the justification in:
1b58b4cac6 ("cxl/port: Record parent dport when adding ports")
...userspace wants to know the routing information for ports for
calculating the memdev order for region creation among other things.
Cache the information the kernel discovers at enumeration time in a
'parent_dport' attribute to save userspace the time of trawling sysfs
to recover the same information.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167124082375.1626103.6047000000121298560.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Both cxl_switch_decoders() and cxl_endpoint_decoders() are considered by
cxl_region_decode_commit(). Flag cases where cxl_switch_decoders with
multiple targets, or cxl_endpoint_decoders do not have a commit callback
set. The switch case is unlikely to happen since switches are only
enumerated by the CXL core, but the endpoint case may support decoders
defined by drivers outside of drivers/cxl, like accerator drivers.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167124081824.1626103.1555704405392757219.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For debugging it is very helpful to see which commands are sent. Add
it to the debug message.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20230103210151.1126873-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
'addr' that contains RAS UE register address is re-assigned to
RAS_CAP_CONTROL offset if there are multiple UE errors. Use different addr
variable to avoid the reassignment mistake.
Fixes: 2905cb5236 ("cxl/pci: Add (hopeful) error handling support")
Reported-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167302318779.580155.15233596744650706167.stgit@djiang5-mobl3.local
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
No need for more than once per module load.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20221215183836.24136-1-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL is using tracepoints for reporting RAS capability register payloads
for AER events, and has plans to use tracepoints for the output payload
of Get Poison List and Get Event Records commands. For organization
purposes it would be nice to keep those all under a single + local CXL
trace system. This also organization also potentially helps in the
future when CXL drivers expand beyond generic memory expanders, however
that would also entail a move away from the expander-specific
cxl_dev_state context, save that for later.
Note that the powerpc-specific drivers/misc/cxl/ also defines a 'cxl'
trace system, however, it is unlikely that a single platform will ever
load both drivers simultaneously.
Cc: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167051869176.436579.9728373544811641087.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Due to a typo, the check of whether or not a memdev has already been
used as a target for the region (above code piece) will always be
skipped. Given a memdev with more than one HDM decoder, an interleaved
region can be created that maps multiple HPAs to the same DPA. According
to CXL spec 3.0 8.1.3.8.4, "Aliasing (mapping more than one Host
Physical Address (HPA) to a single Device Physical Address) is
forbidden."
Fix this by using existing iterator for memdev reuse check.
Cc: <stable@vger.kernel.org>
Fixes: 384e624bb2 ("cxl/region: Attach endpoint decoders")
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/20221107212153.745993-1-fan.ni@samsung.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
readl() already handles endian conversion. That's the main difference
between readl() and __raw_readl(). This is benign on little-endian
systems, but big endian systems will end up byte-swabbing twice.
Fixes: 2905cb5236 ("cxl/pci: Add (hopeful) error handling support")
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167030092025.4045167.10651070153523351093.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The first argument to the CXL AER trace points is the source device.
Pass a 'const struct device *' rather than a 'const char *' for more
type precision / safety.
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167030091477.4045167.15174636482098463885.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL PMEM security operations are routed through the NVDIMM sysfs
interface. For this reason the corresponding commands are marked
"exclusive" to preclude collisions between the ioctl ABI and the sysfs
ABI. However, a better way to preclude that collision is to simply
remove the ioctl ABI (command-id definitions) for those operations.
Now that cxl_internal_send_cmd() (formerly cxl_mbox_send_cmd()) no
longer needs to talk the cxl_mem_commands array, all of the uapi
definitions for the security commands can be dropped.
These never appeared in a released kernel, so no regression risk.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167030056464.4044561.11486507095384253833.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
cxl_internal_send_cmd() skips output size validation for variable output
commands which is not ideal. Most of the time internal usages want to
fail if the output size does not match what was requested. For other
commands where the caller cannot predict the size there is usually a
a header that conveys how much vaild data is in the payload. For those
cases add @min_out as a parameter to specify what the minimum response
payload needs to be for the caller to parse the rest of the payload.
In this patch only Get Supported Logs has that behavior, but going
forward records retrieval commands like Get Poison List and Get Event
Records can use @min_out to retrieve a variable amount of records.
Critically, this validation scheme skips the needs to interrogate the
cxl_mem_commands array which in turn frees up the implementation to
support internal command enabling without also enabling external / user
commands.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167030055918.4044561.10339573829837910505.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Internally cxl_mbox_send_cmd() converts all passed-in parameters to a
'struct cxl_mbox_cmd' instance and sends that to cxlds->mbox_send(). It
then teases the possibilty that the caller can validate the output size.
However, they cannot since the resulting output size is not conveyed to
the called. Fix that by making the caller pass in a constructed 'struct
cxl_mbox_cmd'. This prepares for a future patch to add output size
validation on a per-command basis.
Given the change in signature, also change the name to differentiate it
from the user command submission path that performs more validation
before generating the 'struct cxl_mbox_cmd' instance to execute.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167030055370.4044561.17788093375112783036.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Multi-byte integer values in CXL mailbox payloads are little endian. Add
a definition of the Get Security State output payload and convert the
value before testing flags.
Fixes: 3282811555 ("cxl/pmem: Introduce nvdimm_security_ops with ->get_flags() operation")
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167030054822.4044561.4917796262037689553.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Change names for interleave ways macros to clearly indicate which
variable is encoded and which is the actual ways value.
ways == interleave ways
eiw == encoded interleave ways
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167027516228.3124679.11265039496968588580.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Change names for granularity macros to clearly indicate which
variable is encoded and which is the actual granularity.
granularity == interleave granularity
eig == encoded interleave granularity
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167027493237.3124429.8948852388671827664.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After parsing for a CHBCR in cxl_get_chbcr() the case of (ctx.chbcr ==
CXL_RESOURCE_NONE) is a slighly different error reason than the
!ctx.chbcr case. In the first case the CHBS was found but the CHBCR
was invalid or something else failed to determine it, while in the
latter case no CHBS entry exists at all.
Update the warning message to reflect this. The log messages for both
cases can be differentiated now and the reason for a failure can be
determined better.
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167027170051.3542509.10494781536638424397.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The BIOS provided CXIMS (CXL XOR Interleave Math Structure) is required
for calculating a targets position in an interleave list during region
creation. The CXL driver expects to discover a CXIMS that matches the
HBIG (Host Bridge Interleave Granularity) and stores the xormaps found
in that CXIMS for retrieval during region creation.
If there is no CXIMS for an HBIG, no maps are stored. That leads to a
NULL pointer dereference at xormap retrieval during region creation.
Add a check during ACPI probe for the case of no matching CXIMS. Emit
an error message and fail to add the decoder.
Fixes: f9db85bfec ("cxl/acpi: Support CXL XOR Interleave Math (CXIMS)")
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20221205002951.1788783-1-alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The 0day robot belatedly points out that @addr is not properly tagged as
an iomap pointer:
"drivers/cxl/core/regs.c:332:14: sparse: sparse: incorrect type in
assignment (different address spaces) @@ expected void *addr @@
got void [noderef] __iomem * @@"
Fixes: 1168271ca054 ("cxl/acpi: Extract component registers of restricted hosts from RCRB")
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/167008768190.2516013.11918622906007677341.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pick up support for "XOR" interleave math when parsing ACPI CFMWS window
structures. Fix up conflicts with the RCH emulation already pending in
cxl/next.
Unlike a CXL memory expander in a VH topology that has at least one
intervening 'struct cxl_port' instance between itself and the CXL root
device, an RCD attaches one-level higher. For example:
VH
┌──────────┐
│ ACPI0017 │
│ root0 │
└─────┬────┘
│
┌─────┴────┐
│ dport0 │
┌─────┤ ACPI0016 ├─────┐
│ │ port1 │ │
│ └────┬─────┘ │
│ │ │
┌──┴───┐ ┌──┴───┐ ┌───┴──┐
│dport0│ │dport1│ │dport2│
│ RP0 │ │ RP1 │ │ RP2 │
└──────┘ └──┬───┘ └──────┘
│
┌───┴─────┐
│endpoint0│
│ port2 │
└─────────┘
...vs:
RCH
┌──────────┐
│ ACPI0017 │
│ root0 │
└────┬─────┘
│
┌───┴────┐
│ dport0 │
│ACPI0016│
└───┬────┘
│
┌────┴─────┐
│endpoint0 │
│ port1 │
└──────────┘
So arrange for endpoint port in the RCH/RCD case to appear directly
connected to the host-bridge in its singular role as a dport. Compare
that to the VH case where the host-bridge serves a dual role as a
'cxl_dport' for the CXL root device *and* a 'cxl_port' upstream port for
the Root Ports in the Root Complex that are modeled as 'cxl_dport'
instances in the CXL topology.
Another deviation from the VH case is that RCDs may need to look up
their component registers from the Root Complex Register Block (RCRB).
That platform firmware specified RCRB area is cached by the cxl_acpi
driver and conveyed via the host-bridge dport to the cxl_mem driver to
perform the cxl_rcrb_to_component() lookup for the endpoint port
(See 9.11.8 CXL Devices Attached to an RCH for the lookup of the
upstream port component registers).
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993045621.1882361.1730100141527044744.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Jonathan Camerom <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
tl;dr: Clean up an unnecessary export and enable cxl_test.
An RCD (Restricted CXL Device), in contrast to a typical CXL device in
a VH topology, obtains its component registers from the bottom half of
the associated CXL host bridge RCRB (Root Complex Register Block). In
turn this means that cxl_rcrb_to_component() needs to be called from
devm_cxl_add_endpoint().
Presently devm_cxl_add_endpoint() is part of the CXL core, but the only
user is the CXL mem module. Move it from cxl_core to cxl_mem to not only
get rid of an unnecessary export, but to also enable its call out to
cxl_rcrb_to_component(), in a subsequent patch, to be mocked by
cxl_test. Recall that cxl_test can only mock exported symbols, and since
cxl_rcrb_to_component() is itself inside the core, all callers must be
outside of cxl_core to allow cxl_test to mock it.
Reviewed-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993045072.1882361.13944923741276843683.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When the CFMWS is using XOR math, parse the corresponding
CXIMS structure and store the xormaps in the root decoder
structure. Use the xormaps in a new lookup, cxl_hb_xor(),
to find a targets entry in the host bridge interleave
target list.
Defined in CXL Specfication 3.0 Section: 9.17.1
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/5794813acdf7b67cfba3609c6aaff46932fa38d0.1669847017.git.alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add AER error handler callback to read the RAS capability structure
correctable error (CE) status register for the CXL device. Log the
error as a trace event and clear the error. For CXL devices, the driver
also needs to write back to the status register to clear the
unmasked correctable errors.
See CXL spec rev3.0 8.2.4.16 for RAS capability structure CE Status
Register.
Suggested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166985287203.2871899.13605149073500556137.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add nominal error handling that tears down CXL.mem in response to error
notifications that imply a device reset. Given some CXL.mem may be
operating as System RAM, there is a high likelihood that these error
events are fatal. However, if the system survives the notification the
expectation is that the driver behavior is equivalent to a hot-unplug
and re-plug of an endpoint.
Note that this does not change the mask values from the default. That
awaits CXL _OSC support to determine whether platform firmware is in
control of the mask registers.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166974413966.1608150.15522782911404473932.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add tracepoint events for recording the CXL uncorrectable and correctable
errors. For uncorrectable errors, there is additional data of 512B from
the header log register (CXL spec rev3 8.2.4.16.7). The trace event will
intake a dynamic array that will dump the entire Header Log data. If
multiple errors are set in the status register, then the
'first error' field (CXL spec rev3 v8.2.4.16.6) is read from the Error
Capabilities and Control Register in order to determine the error.
This implementation does not include CXL IDE Error details.
Cc: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/166974413388.1608150.5875712482260436188.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The RAS Capability Structure has some ancillary information that may be
relevant with respect to AER events, link and protcol error status
registers. Map the RAS Capability Registers in support of defining a
'struct pci_error_handlers' instance for the cxl_pci driver.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166974412803.1608150.7096566580400947001.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The RAS Capabilitiy Structure is a CXL Component register capability
block. Unlike the HDM Decoder Capability, it will be referenced by the
cxl_pci driver in response to PCIe AER events. Due to this it is no
longer the case that cxl_map_component_regs() can assume that it should
map all component registers. Plumb a bitmask of capability ids to map
through cxl_map_component_regs().
For symmetry cxl_probe_device_regs() is updated to populate @id in
'struct cxl_reg_map' even though cxl_map_device_regs() does not have a
need to map a subset of the device registers per caller.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166974412214.1608150.11487843455070795378.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Update the port driver to use cxl_map_component_registers() so that the
component register block can be shared between the cxl_pci driver and
the cxl_port driver. I.e. stop the port driver from reserving the entire
component register block for itself via request_region() when it only
needs the HDM Decoder Capability subset.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166974411625.1608150.7149373371599960307.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The component registers are currently unused by the cxl_pci driver.
Only the physical address base of the component registers is conveyed to
the cxl_mem driver. Just call cxl_map_device_registers() directly.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166974410443.1608150.15855499736133349600.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Rather then duplicating the setting of valid, length, and offset for
each type, just convey a pointer to the register map to common code.
Yes, the change in cxl_probe_component_regs() does not save
any lines of code, but it is preparation for adding another component
register type to map (RAS Capability Structure).
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166974409293.1608150.17661353937678581423.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A downstream port must be connected to a component register block.
For restricted hosts the base address is determined from the RCRB. The
RCRB is provided by the host's CEDT CHBS entry. Rework CEDT parser to
get the RCRB and add code to extract the component register block from
it.
RCRB's BAR[0..1] point to the component block containing CXL subsystem
component registers. MEMBAR extraction follows the PCI base spec here,
esp. 64 bit extraction and memory range alignment (6.0, 7.5.1.2.1). The
RCRB base address is cached in the cxl_dport per-host bridge so that the
upstream port component registers can be retrieved later by an RCD
(RCIEP) associated with the host bridge.
Note: Right now the component register block is used for HDM decoder
capability only which is optional for RCDs. If unsupported by the RCD,
the HDM init will fail. It is future work to bypass it in this case.
Co-developed-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/Y4dsGZ24aJlxSfI1@rric.localdomain
[djbw: introduce devm_cxl_add_rch_dport()]
Link: https://lore.kernel.org/r/166993044524.1882361.2539922887413208807.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A "DPA invalidation event" is any scenario where the contents of a DPA
(Device Physical Address) is modified in a way that is incoherent with
CPU caches, or if the HPA (Host Physical Address) to DPA association
changes due to a remapping event.
PMEM security events like Unlock and Passphrase Secure Erase already
manage caches through LIBNVDIMM, so that leaves HPA to DPA remap events
that need cache management by the CXL core. Those only happen when the
boot time CXL configuration has changed. That event occurs when
userspace attaches an endpoint decoder to a region configuration, and
that region is subsequently activated.
The implications of not invalidating caches between remap events is that
reads from the region at different points in time may return different
results due to stale cached data from the previous HPA to DPA mapping.
Without a guarantee that the region contents after cxl_region_probe()
are written before being read (a layering-violation assumption that
cxl_region_probe() can not make) the CXL subsystem needs to ensure that
reads that precede writes see consistent results.
A CONFIG_CXL_REGION_INVALIDATION_TEST option is added to support debug
and unit testing of the CXL implementation in QEMU or other environments
where cpu_cache_has_invalidate_memregion() returns false. This may prove
too restrictive for QEMU where the HDM decoders are emulated, but in
that case the CXL subsystem needs some new mechanism / indication that
the HDM decoder is emulated and not a passthrough of real hardware.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166993222098.1995348.16604163596374520890.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Preclude the possibility of user tooling sending device secrets in the
clear into the kernel by marking the security commands as exclusive.
This mandates the usage of the keyctl ABI for managing the device
passphrase.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/166993221008.1995348.11651567302609703175.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
cxl_region_probe() allows for regions not in the 'commit' state to be
enabled. Fail probe when the region is not committed otherwise the
kernel may indicate that an address range is active when none of the
decoders are active.
Fixes: 8d48817df6 ("cxl/region: Add region driver boiler plate")
Cc: <stable@vger.kernel.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/166993220462.1995348.1698008475198427361.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A port of a CXL host bridge links to the bridge's ACPI device
(&adev->dev) with its corresponding uport/dport device (uport_dev and
dport_dev respectively). The device is not a direct parent device in
the PCI topology as pdev->dev.parent points to a PCI bridge's (struct
pci_host_bridge) device. The following CXL memory device hierarchy
would be valid for an endpoint once an RCD EP would be enabled (note
this will be done in a later patch):
VH mode:
cxlmd->dev.parent->parent
^^^\^^^^^^\ ^^^^^^\
\ \ pci_dev (Type 1, Downstream Port)
\ pci_dev (Type 0, PCI Express Endpoint)
cxl mem device
RCD mode:
cxlmd->dev.parent->parent
^^^\^^^^^^\ ^^^^^^\
\ \ pci_host_bridge
\ pci_dev (Type 0, RCiEP)
cxl mem device
In VH mode a downstream port is created by port enumeration and thus
always exists.
Now, in RCD mode the host bridge also already exists but it references
to an ACPI device. A port lookup by the PCI device's parent device
will fail as a direct link to the registered port is missing. The ACPI
device of the bridge must be determined first.
To prevent this, change port registration of a CXL host to use the
bridge device instead. Do this also for the VH case as port topology
will better reflect the PCI topology then.
Signed-off-by: Robert Richter <rrichter@amd.com>
[djbw: rebase on brige mocking]
Reviewed-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166993043978.1882361.16238060349889579369.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Accept any cxl_test topology device as the first argument in
cxl_chbs_context.
This is in preparation for reworking the detection of the component
registers across VH and RCH topologies. Move
mock_acpi_table_parse_cedt() beneath the definition of is_mock_port()
and use is_mock_port() instead of the explicit mock cxl_acpi device
check.
Acked-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166993043433.1882361.17651413716599606118.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that cxl_nvdimm and cxl_pmem_region objects are torn down
sychronously with the removal of either the bridge, or an endpoint, the
cxl_pmem_wq infrastructure can be jettisoned.
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993042335.1882361.17022872468068436287.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The three objects 'struct cxl_nvdimm_bridge', 'struct cxl_nvdimm', and
'struct cxl_pmem_region' manage CXL persistent memory resources. The
bridge represents base platform resources, the nvdimm represents one or
more endpoints, and the region is a collection of nvdimms that
contribute to an assembled address range.
Their relationship is such that a region is torn down if any component
endpoints are removed. All regions and endpoints are torn down if the
foundational bridge device goes down.
A workqueue was deployed to manage these interdependencies, but it is
difficult to reason about, and fragile. A recent attempt to take the CXL
root device lock in the cxl_mem driver was reported by lockdep as
colliding with the flush_work() in the cxl_pmem flows.
Instead of the workqueue, arrange for all pmem/nvdimm devices to be torn
down immediately and hierarchically. A similar change is made to both
the 'cxl_nvdimm' and 'cxl_pmem_region' objects. For bisect-ability both
changes are made in the same patch which unfortunately makes the patch
bigger than desired.
Arrange for cxl_memdev and cxl_region to register a cxl_nvdimm and
cxl_pmem_region as a devres release action of the bridge device.
Additionally, include a devres release action of the cxl_memdev or
cxl_region device that triggers the bridge's release action if an endpoint
exits before the bridge. I.e. this allows either unplugging the bridge,
or unplugging and endpoint to result in the same cleanup actions.
To keep the patch smaller the cleanup of the now defunct workqueue
infrastructure is saved for a follow-on patch.
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993041773.1882361.16444301376147207609.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that a cxl_nvdimm object can only experience ->remove() via an
unregistration event (because the cxl_nvdimm bind attributes are
suppressed), additional cleanups are possible.
It is already the case that the removal of a cxl_memdev object triggers
->remove() on any associated region. With that mechanism in place there
is no need for the cxl_nvdimm removal to trigger the same. Just rely on
cxl_region_detach() to tear down the whole cxl_pmem_region.
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993041215.1882361.6321535567798911286.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The 'struct cxl_nvdimm_bridge' object advertises platform CXL PMEM
resources. It coordinates with libnvdimm to attach nvdimm devices and
regions for each corresponding CXL object. That coordination is
complicated, i.e. difficult to reason about, and it turns out redundant.
It is already the case that the CXL core knows how to tear down a
cxl_region when a cxl_memdev goes through ->remove(), so that pathway
can be extended to directly cleanup cxl_nvdimm and cxl_pmem_region
objects.
Towards the goal of ripping out the cxl_nvdimm_bridge state machine,
arrange for cxl_acpi to optionally pre-load the cxl_pmem driver so that
the nvdimm bridge is active synchronously with
devm_cxl_add_nvdimm_bridge(), and remove all the bind attributes for the
cxl_nvdimm* objects since the cxl root device and cxl_memdev bind
attributes are sufficient.
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993040668.1882361.7450361097265836752.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add provider name in order to associate cxl test dimm from cxl_test to the
cxl pmem device when going through sysfs for security testing.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983618174.2734609.15600031015423828810.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add an id group attribute for CXL based nvdimm object. The addition allows
ndctl to display the "unique id" for the nvdimm. The serial number for the
CXL memory device will be used for this id.
[
{
"dev":"nmem10",
"id":"0x4",
"security":"disabled"
},
]
The id attribute is needed by the ndctl security key management to setup a
keyblob with a unique file name tied to the mem device.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983617029.2734609.8251308562882142281.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The original nvdimm_security_ops ->disable() only supports user passphrase
for security disable. The CXL spec introduced the disabling of master
passphrase. Add a ->disable_master() callback to support this new operation
and leaving the old ->disable() mechanism alone. A "disable_master" command
is added for the sysfs attribute in order to allow command to be issued
from userspace. ndctl will need enabling in order to utilize this new
operation.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983616454.2734609.14204031148234398086.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Create callback function to support the nvdimm_security_ops() ->erase()
callback. Translate the operation to send "Passphrase Secure Erase"
security command for CXL memory device.
When the mem device is secure erased, cpu_cache_invalidate_memregion() is
called in order to invalidate all CPU caches before attempting to access
the mem device again.
See CXL 3.0 spec section 8.2.9.8.6.6 for reference.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983615293.2734609.10358657600295932156.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Create callback function to support the nvdimm_security_ops() ->unlock()
callback. Translate the operation to send "Unlock" security command for CXL
mem device.
When the mem device is unlocked, cpu_cache_invalidate_memregion() is called
in order to invalidate all CPU caches before attempting to access the mem
device.
See CXL rev3.0 spec section 8.2.9.8.6.4 for reference.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983614167.2734609.15124543712487741176.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Create callback function to support the nvdimm_security_ops() ->freeze()
callback. Translate the operation to send "Freeze Security State" security
command for CXL memory device.
See CXL rev3.0 spec section 8.2.9.8.6.5 for reference.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983613019.2734609.10645754779802492122.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Create callback function to support the nvdimm_security_ops ->disable()
callback. Translate the operation to send "Disable Passphrase" security
command for CXL memory device. The operation supports disabling a
passphrase for the CXL persistent memory device. In the original
implementation of nvdimm_security_ops, this operation only supports
disabling of the user passphrase. This is due to the NFIT version of
disable passphrase only supported disabling of user passphrase. The CXL
spec allows disabling of the master passphrase as well which
nvidmm_security_ops does not support yet. In this commit, the callback
function will only support user passphrase.
See CXL rev3.0 spec section 8.2.9.8.6.3 for reference.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983611878.2734609.10602135274526390127.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Create callback function to support the nvdimm_security_ops ->change_key()
callback. Translate the operation to send "Set Passphrase" security command
for CXL memory device. The operation supports setting a passphrase for the
CXL persistent memory device. It also supports the changing of the
currently set passphrase. The operation allows manipulation of a user
passphrase or a master passphrase.
See CXL rev3.0 spec section 8.2.9.8.6.2 for reference.
However, the spec leaves a gap WRT master passphrase usages. The spec does
not define any ways to retrieve the status of if the support of master
passphrase is available for the device, nor does the commands that utilize
master passphrase will return a specific error that indicates master
passphrase is not supported. If using a device does not support master
passphrase and a command is issued with a master passphrase, the error
message returned by the device will be ambiguous.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983610751.2734609.4445075071552032091.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add nvdimm_security_ops support for CXL memory device with the introduction
of the ->get_flags() callback function. This is part of the "Persistent
Memory Data-at-rest Security" command set for CXL memory device support.
The ->get_flags() function provides the security state of the persistent
memory device defined by the CXL 3.0 spec section 8.2.9.8.6.1.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983609611.2734609.13231854299523325319.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When reviewing the CFMWS parsing code that deals with the HDM decoders,
I noticed a couple of magic numbers. This commit replaces these magic numbers
with constants defined by the CXL 3.0 specification.
v2:
- Change references to CXL 3.0 specification (David)
- CXL_DECODER_MAX_GRANULARITY_ORDER -> CXL_DECODER_MAX_ENCODED_IG (Dan)
Signed-off-by: Adam Manzanares <a.manzanares@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20220829220249.243888-1-a.manzanares@samsung.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In cxl_acpi_probe() the iterator bus_for_each_dev() walks through all
CXL hosts. Since all dev_*() debug messages point to the ACPI0017
device which is the CXL root for all hosts, the device information is
pointless as it is always the same device. Change this to use the host
device for this instead.
Also, add additional host specific information such as CXL support,
UID and CHBCR.
This is an example log:
acpi ACPI0016:00: UID found: 4
acpi ACPI0016:00: CHBCR found: 0x28090000000
acpi ACPI0016:00: dport added to root0
acpi ACPI0016:00: host-bridge: ACPI0016:00
pci0000:7f: host supports CXL
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20221018132341.76259-6-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL dports are added in a couple of code paths using
devm_cxl_add_dport(). Debug messages are individually generated, but are
incomplete and inconsistent. Change this by moving its generation to
devm_cxl_add_dport(). This unifies the messages and reduces code
duplication. Also, generate messages on failure. Use a
__devm_cxl_add_dport() wrapper to keep the readability of the error
exits.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20221018132341.76259-5-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL ports are added in a couple of code paths using devm_cxl_add_port().
Debug messages are individually generated, but are incomplete and
inconsistent. Change this by moving its generation to
devm_cxl_add_port(). This unifies the messages and reduces code
duplication. Also, generate messages on failure. Use a
__devm_cxl_add_port() wrapper to keep the readability of the error
exits.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20221018132341.76259-4-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The physical base address of a CXL range can be invalid and is then
set to CXL_RESOURCE_NONE. In general software shall prevent such
situations, but it is hard to proof this may never happen. E.g. in
add_port_attach_ep() there this the following:
component_reg_phys = find_component_registers(uport_dev);
port = devm_cxl_add_port(&parent_port->dev, uport_dev,
component_reg_phys, parent_dport);
find_component_registers() and subsequent functions (e.g.
cxl_regmap_to_base()) may return CXL_RESOURCE_NONE. But it is written
to port without any further check in cxl_port_alloc():
port->component_reg_phys = component_reg_phys;
It is then later directly used in devm_cxl_setup_hdm() to map io
ranges with devm_cxl_iomap_block(). Just an example...
Check this condition. Also do not fail silently like an ioremap()
failure, use a WARN_ON_ONCE() for it.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20221018132341.76259-3-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The function devm_cxl_iomap_block() is only used in the core
code. There are two declarations in header files of it, in
drivers/cxl/core/core.h and drivers/cxl/cxl.h. Remove its unused
declaration in drivers/cxl/cxl.h.
Fixing build error in regs.c found by kernel test robot by including
"core.h" there.
Signed-off-by: Robert Richter <rrichter@amd.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20221018132341.76259-2-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The PCIE Data Object Exchange (DOE) mailbox is a protocol run over
configuration cycles. It assumes one initiator at a time. While the
kernel has control of the mailbox user space writes could interfere with
the kernel access.
Mark DOE mailbox config space exclusive when iterated by the CXL driver.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220926215711.2893286-3-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
At region creation time the next region-id is atomically cached so that
there is predictability of region device names. If that region is
destroyed and then a new one is created the region id increments. That
ends up looking like a memory leak, or is otherwise surprising that
identifiers roll forward even after destroying all previously created
regions.
Try to reuse rather than free old region ids at region release time.
While this fixes a cosmetic issue, the needlessly advancing memory
region-id gives the appearance of a memory leak, hence the "Fixes" tag,
but no "Cc: stable" tag.
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Fixes: 779dd20cfb ("cxl/region: Add region creation support")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752186062.947915.13200195701224993317.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When programming port decode targets, the algorithm wants to ensure that
two devices are compatible to be programmed as peers beneath a given
port. A compatible peer is a target that shares the same dport, and
where that target's interleave position also routes it to the same
dport. Compatibility is determined by the device's interleave position
being >= to distance. For example, if a given dport can only map every
Nth position then positions less than N away from the last target
programmed are incompatible.
The @distance for the host-bridge's cxl_port in a simple dual-ported
host-bridge configuration with 2 direct-attached devices is 1, i.e. An
x2 region divided by 2 dports to reach 2 region targets.
An x4 region under an x2 host-bridge would need 2 intervening switches
where the @distance at the host bridge level is 2 (x4 region divided by
2 switches to reach 4 devices).
However, the distance between peers underneath a single ported
host-bridge is always zero because there is no limit to the number of
devices that can be mapped. In other words, there are no decoders to
program in a passthrough, all descendants are mapped and distance only
starts matters for the intervening descendant ports of the passthrough
port.
Add tracking for the number of dports mapped to a port, and use that to
detect the passthrough case for calculating @distance.
Cc: <stable@vger.kernel.org>
Reported-by: Bobo WL <lmw.bobo@gmail.com>
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: http://lore.kernel.org/r/20221010172057.00001559@huawei.com
Fixes: 27b3f8d138 ("cxl/region: Program target lists")
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752185440.947915.6617495912508299445.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When a cxl_nvdimm object goes through a ->remove() event (device
physically removed, nvdimm-bridge disabled, or nvdimm device disabled),
then any associated regions must also be disabled. As highlighted by the
cxl-create-region.sh test [1], a single device may host multiple
regions, but the driver was only tracking one region at a time. This
leads to a situation where only the last enabled region per nvdimm
device is cleaned up properly. Other regions are leaked, and this also
causes cxl_memdev reference leaks.
Fix the tracking by allowing cxl_nvdimm objects to track multiple region
associations.
Cc: <stable@vger.kernel.org>
Link: https://github.com/pmem/ndctl/blob/main/test/cxl-create-region.sh [1]
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Fixes: 04ad63f086 ("cxl/region: Introduce cxl_pmem_region objects")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752183647.947915.2045230911503793901.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When a region is deleted any targets that have been previously assigned
to that region hold references to it. Trigger those references to
drop by detaching all targets at unregister_region() time.
Otherwise that region object will leak as userspace has lost the ability
to detach targets once region sysfs is torn down.
Cc: <stable@vger.kernel.org>
Fixes: b9686e8c8e ("cxl/region: Enable the assignment of endpoint decoders to regions")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752183055.947915.17681995648556534844.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Some regions may not have any address space allocated. Skip them when
validating HPA order otherwise a crash like the following may result:
devm_cxl_add_region: cxl_acpi cxl_acpi.0: decoder3.4: created region9
BUG: kernel NULL pointer dereference, address: 0000000000000000
[..]
RIP: 0010:store_targetN+0x655/0x1740 [cxl_core]
[..]
Call Trace:
<TASK>
kernfs_fop_write_iter+0x144/0x200
vfs_write+0x24a/0x4d0
ksys_write+0x69/0xf0
do_syscall_64+0x3a/0x90
store_targetN+0x655/0x1740:
alloc_region_ref at drivers/cxl/core/region.c:676
(inlined by) cxl_port_attach_region at drivers/cxl/core/region.c:850
(inlined by) cxl_region_attach at drivers/cxl/core/region.c:1290
(inlined by) attach_target at drivers/cxl/core/region.c:1410
(inlined by) store_targetN at drivers/cxl/core/region.c:1453
Cc: <stable@vger.kernel.org>
Fixes: 384e624bb2 ("cxl/region: Attach endpoint decoders")
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166752182461.947915.497032805239915067.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When an intermediate port's decoders have been exhausted by existing
regions, and creating a new region with the port in question in it's
hierarchical path is attempted, cxl_port_attach_region() fails to find a
port decoder (as would be expected), and drops into the failure / cleanup
path.
However, during cleanup of the region reference, a sanity check attempts
to dereference the decoder, which in the above case didn't exist. This
causes a NULL pointer dereference BUG.
To fix this, refactor the decoder allocation and de-allocation into
helper routines, and in this 'free' routine, check that the decoder,
@cxld, is valid before attempting any operations on it.
Cc: <stable@vger.kernel.org>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Fixes: 384e624bb2 ("cxl/region: Attach endpoint decoders")
Link: https://lore.kernel.org/r/20221101074100.1732003-1-vishal.l.verma@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Writes to the device must include an offset and size as defined in
CXL 2.0 8.2.9.5.2.4 Set LSA (Opcode 4103h)
Fixes tag is non obvious as this code has been through several
reworks and variable names + wasn't in use until the addition
of the region code.
Due to a bug in QEMU CXL emulation this overrun resulted in QEMU
crashing.
Reported-by: Bobo WL <lmw.bobo@gmail.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Fixes: 60b8f17215 ("cxl/pmem: Translate NVDIMM label commands to CXL label commands")
Link: https://lore.kernel.org/r/20220815154044.24733-3-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Not all decoders have a commit callback.
The CXL specification allows a host bridge with a single root port to
have no explicit HDM decoders. Currently the region driver assumes there
are none. As such the CXL core creates a special pass through decoder
instance without a commit callback.
Prior to this patch, the ->commit() callback was called unconditionally.
Thus a configuration with 1 Host Bridge, 1 Root Port, 1 switch with
multiple downstream ports below which there are multiple CXL type 3
devices results in a situation where committing the region causes a null
pointer dereference.
Reported-by: Bobo WL <lmw.bobo@gmail.com>
Fixes: 176baefb2e ("cxl/hdm: Commit decoder state to hardware")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/20220818164210.2084-1-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A bug in the LSA code resulted in transfers slightly larger
than the mailbox size. Let us make it easier to catch similar
issues in future by adding a low level check.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220815154044.24733-2-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Vishal notes that when attempting to define a second pmem region on a
device the DPA allocation fails with a message of the form:
decoder11.1: failed to reserve skipped space
Recall that the skip setting is used when there is a pmem allocation in
the presence of free ram DPA space. The first pmem allocation skips over
the free ram and subsequent pmem allocations do not require a skip. The
bug is that a skip is still attempted and the DPA reservation code
flags the double skip allocation conflict.
Fixes: cf880423b6 ("cxl/hdm: Add support for allocating DPA to an endpoint decoder")
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973754730.1558392.15466392461645857658.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The endpoint decode granularity must be <= the window granularity
otherwise capacity in the endpoints is lost in the decode. Consider an
attempt to have a region granularity of 512 with 4 devices within a
window that maps 2 host bridges at a granularity of 256 bytes:
HPA DPA Offset HB Port EP
0x0 0x0 0 0 0
0x100 0x0 1 0 2
0x200 0x100 0 0 0
0x300 0x100 1 0 2
0x400 0x200 0 1 1
0x500 0x200 1 1 3
0x600 0x300 0 1 1
0x700 0x300 1 1 3
0x800 0x400 0 0 0
0x900 0x400 1 0 2
0xA00 0x500 0 0 0
0xB00 0x500 1 0 2
Notice how endpoint0 maps HPA 0x0 and 0x200 correctly, but then at HPA
0x800 it results in DPA 0x200-0x400 on being skipped.
Fix this by restricing the region granularity to be equal to the window
granularity resulting in the following for a x4 region under a x2 window
at a granularity of 256.
HPA DPA Offset HB Port EP
0x0 0x0 0 0 0
0x100 0x0 1 0 2
0x200 0x0 0 1 1
0x300 0x0 1 1 3
0x400 0x100 0 0 0
0x500 0x100 1 0 2
0x600 0x100 0 1 1
0x700 0x100 1 1 3
Not that it ever made practical sense to support region granularity >
window granularity. The window rotates host bridges causing endpoints to
never see a consecutive stream of requests at the desired granularity
without breaks to issue cycles to the other host bridge.
Fixes: 80d10a6cee ("cxl/region: Add interleave geometry attributes")
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973127171.1526540.9923273539049172976.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In cases where the decode fans out as it traverses downstream, the
interleave granularity needs to increment to identify the port selector
bits out of the remaining address bits. For example, recall that with an
x2 parent port intereleave (IW == 1), the downstream decode for children
of those ports will either see address bit IG+8 always set, or address
bit IG+8 always clear. So if the child port needs to select a downstream
port it can only use address bits starting at IG+9 (where IG and IW are
the CXL encoded values for interleave granularity (ilog2(ig) - 8) and
ways (ilog2(iw))).
When the parent port interleave is x1 no such masking occurs and the
child port can maintain the granularity that was routed to the parent
port.
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973126583.1526540.657948655360009242.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A recent bug fix added the setup of the endpoint decoder interleave
geometry settings to cxl_region_attach(). Move the HPA setup there as
well to keep all endpoint decoder parameter setting in a central
location.
For symmetry, move endpoint HPA teardown to cxl_region_detach(), and for
switches move HPA setup / teardown to cxl_port_{setup,reset}_targets().
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973126020.1526540.14701949254436069807.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Jonathan notes:
"Curiously interleave ways = 1 for the EPs which is obviously wrong"
...while testing the latest CXL development branch on QEMU.
It turns out the region creation process failed to program the endpoint
decoders. This was missed because the default settings of x1 at 4K
intereleave still results in the region appearing to function. Jonathan
caught the bug by reverse mapping the translations that need to happen
for the QEMU support.
Link: https://lore.kernel.org/r/62e95fdf9f6e2_30440294e4@dwillia2-xfh.jf.intel.com.notmuch
Fixes: 384e624bb2 ("cxl/region: Attach endpoint decoders")
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165951146336.967013.11160153960900111443.stgit@dwillia2-xfh.jf.intel.com
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Sphinx reported undescribed parameters in cxl_region_params struct:
./drivers/cxl/cxl.h:376: warning: Function parameter or member 'targets' not described in 'cxl_region_params'
./drivers/cxl/cxl.h:376: warning: Function parameter or member 'nr_targets' not described in 'cxl_region_params'
Describe these members.
Fixes: b9686e8c8e ("cxl/region: Enable the assignment of endpoint decoders to regions")
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220804075448.98241-3-bagasdotme@gmail.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Sphinx reported indentation warnings:
Documentation/driver-api/cxl/memory-devices:457: ./drivers/cxl/core/region.c:732: WARNING: Unexpected indentation.
Documentation/driver-api/cxl/memory-devices:457: ./drivers/cxl/core/region.c:733: WARNING: Block quote ends without a blank line; unexpected unindent.
Documentation/driver-api/cxl/memory-devices:457: ./drivers/cxl/core/region.c:735: WARNING: Unexpected indentation.
These warnings above are due to missing blank line padding in the nested list
in kernel-doc comment for cxl_rr_ep_add().
Add the paddings to fix the warnings.
Fixes: 384e624bb2 ("cxl/region: Attach endpoint decoders")
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220804075448.98241-2-bagasdotme@gmail.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The nvdimm_pmem_region_create() function returns NULL on error. It does
not return error pointers.
Fixes: 04ad63f086 ("cxl/region: Introduce cxl_pmem_region objects")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/Yuo65lq2WtfdGJ0X@kili
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Dan reports:
The error handling in cxl_port_attach_region() looks like it might
have a similar bug. The cxl_rr->nr_targets++; might want a --.
That function is more complicated.
Indeed cxl_rr->nr_targets leaks when cxl_rr_ep_add() fails, but that
flow is not clear. Fix the bug and the clarity by separating the 'new'
region-reference case from the 'extend' region-reference case. This also
moves the host-physical-address (HPA) validation, that the HPA of a new
region being accounted to the port is greater than the HPA of all other
regions associated with the port, to alloc_region_ref().
Introduce @nr_targets_inc to track when the error exit path needs to
clean up cxl_rr->nr_targets.
Fixes: 384e624bb2 ("cxl/region: Attach endpoint decoders")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: http://lore.kernel.org/r/165939482134.252363.1915691883146696327.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
0day robot reports:
drivers/cxl/core/region.c:196 cxl_region_decode_commit() error: uninitialized symbol 'rc'.
The re-checking of loop termination conditions to determine "success"
makes it hard to see that @rc is initialized in all cases. Remove those
to make it explicit that @rc reflects a commit error and that the rest
of logic is concerned with unwinding committed decoders.
This change potentially results in cxl_region_decode_reset() being
called with @count == 0 where it was not called before, but
cxl_region_decode_reset() treats that as a nop.
Fixes: 176baefb2e ("cxl/hdm: Commit decoder state to hardware")
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: http://lore.kernel.org/r/165951148105.967013.14191992449932268431.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for a patch that validates that the region ways setting
is compatible with the granularity setting, the initial granularity
setting needs to start at zero to indicate "unset".
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/165853777484.2430596.3423921169034844397.stgit@dwillia2-xfh.jf.intel.com
[djbw: fix up unused variable]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After adding support for emulating platform firmware established DPA
reservations, the cxl-topology.sh [1] unit test started crashing with
the following signature:
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bc3: 0000 [#1] PREEMPT SMP
[..]
RIP: 0010:to_cxl_port+0x8/0x60 [cxl_core]
[..]
Call Trace:
<TASK>
__cxl_dpa_release+0x1b/0xd0 [cxl_core]
cxl_dpa_release+0x1d/0x30 [cxl_core]
release_nodes+0x63/0x90
devres_release_all+0x88/0xc0
...i.e. a use after free of a 'struct cxl_endpoint_decoder' object. This
results from the ordering of init_hdm_decoder() before add_hdm_decoder()
where, at release time, the decoder is unregistered and released before
the DPA reservation.
Fix this by extending the life of the object until all DPA reservations
have been released which also preserves platform decoder settings being
settled by the time the decoder is published in sysfs (KOBJ_ADD time).
Note that the @len == 0 case in __cxl_dpa_reserve() is avoided in
practice as this function is only called for committed decoders and new
non-zero DPA allocations.
Link: https://github.com/pmem/ndctl/blob/pending/test/cxl-topology.sh [1]
Fixes: 9c57cde0dc ("cxl/hdm: Enumerate allocated DPA")
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/165896020625.3546860.12390103413706292760.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The kernel enforces that region granularity is >= to the top-level
interleave-granularity for the given CXL window. However, when the CXL
window interleave is x1, i.e. non-interleaved at the host bridge level,
then the specified granularity does not matter. Override the window
specified granularity to the CXL minimum so that any valid region
granularity is >= to the root granularity.
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/165853776917.2430596.16823264262010844458.stgit@dwillia2-xfh.jf.intel.com
[djbw: add CXL_DECODER_MIN_GRANULARITY per vishal]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For switch and endpoint decoders the relationship of decoders to regions
is 1:1. However, for root decoders the relationship is 1:N. Also,
regions are already children of root decoders, so the 1:N relationship
is observed by walking the following glob:
/sys/bus/cxl/devices/$decoder/region*
Hide the vestigial 'region' attribute for root decoders.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/165853776328.2430596.4647259305040072751.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In support of CXL unit tests in the ndctl project, arrange for the
cxl_acpi driver to load in response to the registration of cxl_test
devices.
Reported-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/165853775783.2430596.13637998086505316619.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The ++ needs a match -- on the clean up path. If the p->nr_targets
value gets to be more than 16 it leads to uninitialized data in
cxl_port_setup_targets().
drivers/cxl/core/region.c:995 cxl_port_setup_targets() error: uninitialized symbol 'eiw'.
Fixes: 27b3f8d138 ("cxl/region: Program target lists")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/YuepCvUAoCtdpcoO@kili
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The "ways" variable comes from the user. The ways_to_cxl() function
has an upper bound but it doesn't check for negatives. Make
the "ways" variable an unsigned int to fix this bug.
Fixes: 80d10a6cee ("cxl/region: Add interleave geometry attributes")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/Yueo3NV2hFCXx1iV@kili
[djbw: fixup interleave_ways_store() to only accept unsigned input]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This should check "p->res" instead of "res" (which is uninitialized).
Fixes: 23a22cd1c9 ("cxl/region: Allocate HPA capacity to regions")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/Yueor88I/DkVSOtL@kili
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The LIBNVDIMM subsystem is a platform agnostic representation of system
NVDIMM / persistent memory resources. To date, the CXL subsystem's
interaction with LIBNVDIMM has been to register an nvdimm-bridge device
and cxl_nvdimm objects to proxy CXL capabilities into existing LIBNVDIMM
subsystem mechanics.
With regions the approach is the same. Create a new cxl_pmem_region
object to proxy CXL region details into a LIBNVDIMM definition. With
this enabling LIBNVDIMM can partition CXL persistent memory regions with
legacy namespace labels. A follow-on patch will add CXL region label and
CXL namespace label support to persist region configurations across
driver reload / system-reset events.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784340111.1758207.3036498385188290968.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Be careful to only disable cxl_pmem objects related to a given
cxl_nvdimm_bridge. Otherwise, offline_nvdimm_bus() reaches across CXL
domains and disables more than is expected.
Fixes: 21083f5152 ("cxl/pmem: Register 'pmem' / cxl_nvdimm devices")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784339569.1758207.1557084545278004577.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL region driver is responsible for routing fully formed CXL
regions to one of libnvdimm, for persistent memory regions, device-dax
for volatile memory regions, or just act as an enumeration placeholder
if the region was setup and configuration locked by platform firmware.
In the platform-firmware-setup case the expectation is that region is
already accounted in the system memory map, i.e. already enabled as
"System RAM".
For now, just attach to CXL regions in the CXL_CONFIG_COMMIT state, and
take no further action.
Given this driver is just a small / simple router, include it in the
core rather than its own module.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-18-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After all the soft validation of the region has completed, convey the
region configuration to hardware while being careful to commit decoders
in specification mandated order. In addition to programming the endpoint
decoder base-address, interleave ways and granularity, the switch
decoder target lists are also established.
While the kernel can enforce spec-mandated commit order, it can not
enforce spec-mandated reset order. For example, the kernel can't stop
someone from removing an endpoint device that is occupying decoderN in a
switch decoder where decoderN+1 is also committed. To reset decoderN,
decoderN+1 must be torn down first. That "tear down the world"
implementation is saved for a follow-on patch.
Callback operations are provided for the 'commit' and 'reset'
operations. While those callbacks may prove useful for CXL accelerators
(Type-2 devices with memory) the primary motivation is to enable a
simple way for cxl_test to intercept those operations.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784338418.1758207.14659830845389904356.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Once the region's interleave geometry (ways, granularity, size) is
established and all the endpoint decoder targets are assigned, the next
phase is to program all the intermediate decoders. Specifically, each
CXL switch in the path between the endpoint and its CXL host-bridge
(including the logical switch internal to the host-bridge) needs to have
its decoders programmed and the target list order assigned.
The difficulty in this implementation lies in determining which endpoint
decoder ordering combinations are valid. Consider the cxl_test case of 2
host bridges, each of those host-bridges attached to 2 switches, and
each of those switches attached to 2 endpoints for a potential 8-way
interleave. The x2 interleave at the host-bridge level requires that all
even numbered endpoint decoder positions be located on the "left" hand
side of the topology tree, and the odd numbered positions on the other.
The endpoints that are peers on the same switch need to have a position
that can be routed with a dedicated address bit per-endpoint. See
check_last_peer() for the details.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784337827.1758207.132121746122685208.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL regions (interleave sets) are made up of a set of memory devices
where each device maps a portion of the interleave with one of its
decoders (see CXL 2.0 8.2.5.12 CXL HDM Decoder Capability Structure).
As endpoint decoders are identified by a provisioning tool they can be
added to a region provided the region interleave properties are set
(way, granularity, HPA) and DPA has been assigned to the decoder.
The attach event triggers several validation checks, for example:
- is the DPA sized appropriately for the region
- is the decoder reachable via the host-bridges identified by the
region's root decoder
- is the device already active in a different region position slot
- are there already regions with a higher HPA active on a given port
(per CXL 2.0 8.2.5.12.20 Committing Decoder Programming)
...and the attach event affords an opportunity to collect data and
resources relevant to later programming the target lists in switch
decoders, for example:
- allocate a decoder at each cxl_port in the decode chain
- for a given switch port, how many the region's endpoints are hosted
through the port
- how many unique targets (next hops) does a port need to map to reach
those endpoints
The act of reconciling this information and deploying it to the decoder
configuration is saved for a follow-on patch.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784337277.1758207.4108508181328528703.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The ACPI CXL Fixed Memory Window Structure (CFMWS) defines multiple
methods to determine which host bridge provides access to a given
endpoint relative to that device's position in the interleave. The
"Interleave Arithmetic" defines either a "standard modulo" /
round-random algorithm, or "xormap" based algorithm which can be defined
as a non-linear transform. Given that there are already more options
beyond "standard modulo" and that "xormap" may turn out to be ACPI CXL
specific, provide a callback for the region provisioning code to map
endpoint positions back to expected host bridge id (cxl_dport target).
For now just support the simple modulo math case and save the xormap for
a follow-on change.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-14-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The region provisioning process involves allocating DPA to a set of
endpoint decoders, and HPA plus the region geometry to a region device.
Then the decoder is assigned to the region. At this point several
validation steps can be performed to validate that the decoder is
suitable to participate in the region.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/165784336184.1758207.16403282029203949622.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After a region's interleave parameters (ways and granularity) are set,
add a way for regions to allocate HPA (host physical address space) from
the free capacity in their parent root-decoder. The allocator for this
capacity reuses the 'struct resource' based allocator used for
CONFIG_DEVICE_PRIVATE.
Once the tuple of "ways, granularity, [uuid], and size" is set the
region configuration transitions to the CXL_CONFIG_INTERLEAVE_ACTIVE
state which is a precursor to allowing endpoint decoders to be added to
a region.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784335630.1758207.420216490941955417.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add ABI to allow the number of devices that comprise a region to be
set as well as the interleave granularity for the region.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
[djbw: reword changelog]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-11-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The process of provisioning a region involves triggering the creation of
a new region object, pouring in the configuration, and then binding that
configured object to the region driver to start its operation. For
persistent memory regions the CXL specification mandates that it
identified by a uuid. Add an ABI for userspace to specify a region's
uuid.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
[djbw: simplify locking]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784334465.1758207.8224025435884752570.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL 2.0 allows for dynamic provisioning of new memory regions (system
physical address resources like "System RAM" and "Persistent Memory").
Whereas DDR and PMEM resources are conveyed statically at boot, CXL
allows for assembling and instantiating new regions from the available
capacity of CXL memory expanders in the system.
Sysfs with an "echo $region_name > $create_region_attribute" interface
is chosen as the mechanism to initiate the provisioning process. This
was chosen over ioctl() and netlink() to keep the configuration
interface entirely in a pseudo-fs interface, and it was chosen over
configfs since, aside from this one creation event, the interface is
read-mostly. I.e. configfs supports cases where an object is designed to
be provisioned each boot, like an iSCSI storage target, and CXL region
creation is mostly for PMEM regions which are created usually once
per-lifetime of a server instance. This is an improvement over nvdimm
that pre-created "seed" devices that tended to confuse users looking to
determine which devices are active and which are idle.
Recall that the major change that CXL brings over previous persistent
memory architectures is the ability to dynamically define new regions.
Compare that to drivers like 'nfit' where the region configuration is
statically defined by platform firmware.
Regions are created as a child of a root decoder that encompasses an
address space with constraints. When created through sysfs, the root
decoder is explicit. When created from an LSA's region structure a root
decoder will possibly need to be inferred by the driver.
Upon region creation through sysfs, a vacant region is created with a
unique name. Regions have a number of attributes that must be configured
before the region can be bound to the driver where HDM decoder program
is completed.
An example of creating a new region:
- Allocate a new region name:
region=$(cat /sys/bus/cxl/devices/decoder0.0/create_pmem_region)
- Create a new region by name:
while
region=$(cat /sys/bus/cxl/devices/decoder0.0/create_pmem_region)
! echo $region > /sys/bus/cxl/devices/decoder0.0/create_pmem_region
do true; done
- Region now exists in sysfs:
stat -t /sys/bus/cxl/devices/decoder0.0/$region
- Delete the region, and name:
echo $region > /sys/bus/cxl/devices/decoder0.0/delete_region
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784333909.1758207.794374602146306032.stgit@dwillia2-xfh.jf.intel.com
[djbw: simplify locking, reword changelog]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The port scanning algorithm in devm_cxl_enumerate_ports() walks up the
topology and adds cxl_port objects starting from the root down to the
endpoint. When those ports are initially created they know all their
dports, but they do not know the downstream cxl_port instance that
represents the next descendant in the topology. Rework create_endpoint()
into devm_cxl_add_endpoint() that enumerates the downstream cxl_port
topology into each port's 'struct cxl_ep' record for each endpoint it
that the port is an ancestor.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-7-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The region provisioning flow involves selecting interleave ways +
granularity settings for a region, and then programming the decoder
topology to meet those constraints, if possible. For example, root
decoders set the minimum interleave ways + granularity for any hosted
regions.
Given decoder programming is not atomic and collisions can occur between
multiple requesting regions userspace will be responsible for conflict
resolution and it needs these attributes to make those decisions.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784332235.1758207.7185062713652694607.stgit@dwillia2-xfh.jf.intel.com
[djbw: reword changelog, make read-only, add sysfs ABI documentaion]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reduce the complexity and the overhead of walking the topology to
determine endpoint connectivity to root decoder interleave
configurations.
Note that cxl_detach_ep(), after it determines that the last @ep has
departed and decides to delete the port, now needs to walk the dport
array with the device_lock() held to remove entries. Previously
list_splice_init() could be used atomically delete all dport entries at
once and then perform entry tear down outside the lock. There is no
list_splice_init() equivalent for the xarray.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784331647.1758207.6345820282285119339.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for region provisioning that needs to walk the topology
by endpoints, use an xarray to record endpoint interest in a given port.
In addition to being more space and time efficient it also reduces the
complexity of the implementation by moving locking internal to the
xarray implementation. It also allows for a single cxl_ep reference to
be recorded in multiple xarrays.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-2-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
At the time that cxl_port instances are being created, cache the dport
from the parent port that points to this new child port. This will be
useful for region provisioning when walking the tree to calculate
decoder targets, and saves rewalking the dport list after the fact to
build this information.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-1-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Recall that the primary role of the cxl_mem driver is to probe if the
given endpoint is connected to a CXL port topology. In that process it
walks its device ancestry to its PCI root port. If that root port is
also a CXL root port then the probe process adds cxl_port object
instances at switch in the path between to the root and the endpoint. As
those cxl_port instances are added, or if a previous enumeration
attempt already created the port, a 'struct cxl_ep' instance is
registered with that port to track the endpoints interested in that
port.
At the time the cxl_ep is registered the downstream egress path from the
port to the endpoint is known. Take the opportunity to record that
information as it will be needed for dynamic programming of decoder
targets during region provisioning.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784329944.1758207.15203961796832072116.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The region provisioning flow will roughly follow a sequence of:
1/ Allocate DPA to a set of decoders
2/ Allocate HPA to a region
3/ Associate decoders with a region and validate that the DPA allocations
and topologies match the parameters of the region.
For now, this change (step 1) arranges for DPA capacity to be allocated
and deleted from non-committed decoders based on the decoder's mode /
partition selection. Capacity is allocated from the lowest DPA in the
partition and any 'pmem' allocation blocks out all remaining ram
capacity in its 'skip' setting. DPA allocations are enforced in decoder
instance order. I.e. decoder N + 1 always starts at a higher DPA than
instance N, and deleting allocations must proceed from the
highest-instance allocated decoder to the lowest.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784329399.1758207.16732038126938632700.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL specification enforces that endpoint decoders are committed in
hw instance id order. In preparation for adding dynamic DPA allocation,
record the hw instance id in endpoint decoders, and enforce allocations
to occur in hw instance id order.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784328827.1758207.9627538529944559954.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Recall that the Device Physical Address (DPA) space of a CXL Memory
Expander is potentially partitioned into a volatile and persistent
portion. A decoder maps a Host Physical Address (HPA) range to a DPA
range and that translation depends on the value of all previous (lower
instance number) decoders before the current one.
In preparation for allowing dynamic provisioning of regions, decoders
need an ABI to indicate which DPA partition a decoder targets. This ABI
needs to be prepared for the possibility that some other agent committed
and locked a decoder that spans the partition boundary.
Add 'decoderX.Y/mode' to endpoint decoders that indicates which
partition 'ram' / 'pmem' the decoder targets, or 'mixed' if the decoder
currently spans the partition boundary.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603881967.551046.6007594190951596439.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for provisioning CXL regions, add accounting for the DPA
space consumed by existing regions / decoders. Recall, a CXL region is a
memory range comprised from one or more endpoint devices contributing a
mapping of their DPA into HPA space through a decoder.
Record the DPA ranges covered by committed decoders at initial probe of
endpoint ports relative to a per-device resource tree of the DPA type
(pmem or volatile-ram).
The cxl_dpa_rwsem semaphore is introduced to globally synchronize DPA
state across all endpoints and their decoders at once. The vast majority
of DPA operations are reads as region creation is expected to be as rare
as disk partitioning and volume creation. The device_lock() for this
synchronization is specifically avoided for concern of entangling with
sysfs attribute removal.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784327682.1758207.7914919426043855876.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Previously the target routing specifics of switch decoders and platform
CXL window resource tracking of root decoders were factored out of
'struct cxl_decoder'. While switch decoders translate from SPA to
downstream ports, endpoint decoders translate from SPA to DPA.
This patch, 3 of 3, adds a 'struct cxl_endpoint_decoder' that tracks an
endpoint-specific Device Physical Address (DPA) resource. For now this
just defines ->dpa_res, a follow-on patch will handle requesting DPA
resource ranges from a device-DPA resource tree.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784327088.1758207.15502834501671201192.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Previously the target routing specifics of switch decoders were factored
out of 'struct cxl_decoder' into 'struct cxl_switch_decoder'.
This patch, 2 of 3, adds a 'struct cxl_root_decoder' as a superset of a
switch decoder that also track the associated CXL window platform
resource.
Note that the reason the resource for a given root decoder needs to be
looked up after the fact (i.e. after cxl_parse_cfmws() and
add_cxl_resource()) is because add_cxl_resource() may have merged CXL
windows in order to keep them at the top of the resource tree / decode
hierarchy.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784326541.1758207.9915663937394448341.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Recall that CXL capable address ranges, on ACPI platforms, are published
in the CEDT.CFMWS (CXL Early Discovery Table: CXL Fixed Memory Window
Structures). These windows represent both the actively mapped capacity
and the potential address space that can be dynamically assigned to a
new CXL decode configuration (region / interleave-set).
CXL endpoints like DDR DIMMs can be mapped at any physical address
including 0 and legacy ranges.
There is an expectation and requirement that the /proc/iomem interface
and the iomem_resource tree in the kernel reflect the full set of
platform address ranges. I.e. that every address range that platform
firmware and bus drivers enumerate be reflected as an iomem_resource
entry. The hard requirement to do this for CXL arises from the fact that
facilities like CONFIG_DEVICE_PRIVATE expect to be able to treat empty
iomem_resource ranges as free for software to use as proxy address
space. Without CXL publishing its potential address ranges in
iomem_resource, the CONFIG_DEVICE_PRIVATE mechanism may inadvertently
steal capacity reserved for runtime provisioning of new CXL regions.
So, iomem_resource needs to know about both active and potential CXL
resource ranges. The active CXL resources might already be reflected in
iomem_resource as "System RAM". insert_resource_expand_to_fit() handles
re-parenting "System RAM" underneath a CXL window.
The "_expand_to_fit()" behavior handles cases where a CXL window is not
a strict superset of an existing entry in the iomem_resource tree. The
"_expand_to_fit()" behavior is acceptable from the perspective of
resource allocation. The expansion happens because a conflicting
resource range is already populated, which means the resource boundary
expansion does not result in any additional free CXL address space being
made available. CXL address space allocation is always bounded by the
orginal unexpanded address range.
However, the potential for expansion does mean that something like
walk_iomem_res_desc(IORES_DESC_CXL...) can only return fuzzy answers on
corner case platforms that cause the resource tree to expand a CXL
window resource over a range that is not decoded by CXL. This would be
an odd platform configuration, but if it becomes a problem in practice
the CXL subsytem could just publish an API that returns definitive
answers.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/165784325943.1758207.5310344844375305118.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently 'struct cxl_decoder' contains the superset of attributes
needed for all decoder types. Before more type-specific attributes are
added to the common definition, reorganize 'struct cxl_decoder' into type
specific objects.
This patch, the first of three, factors out a cxl_switch_decoder type.
See the new kdoc for what a 'struct cxl_switch_decoder' represents in a
CXL topology.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/165784325340.1758207.5064717153608954960.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The per-device CDAT data provides performance data that is relevant for
mapping which CXL devices can participate in which CXL ranges by QTG
(QoS Throttling Group) (per ECN: CXL 2.0 CEDT CFMWS & QTG_DSM) [1]. The
QTG association specified in the ECN is advisory. Until the
cxl_acpi driver grows support for invoking the QTG _DSM method the CDAT
data is only of interest to userspace that may need it for debug
purposes.
Search the DOE mailboxes available, query CDAT data, cache the data and
make it available via a sysfs binary attribute per endpoint at:
/sys/bus/cxl/devices/endpointX/CDAT
...similar to other ACPI-structured table data in
/sys/firmware/ACPI/tables. The CDAT is relative to 'struct cxl_port'
objects since switches in addition to endpoints can host a CDAT
instance. Switch CDAT support is not implemented.
This does not support table updates at runtime. It will always provide
whatever was there when first cached. It is also the case that table
updates are not expected outside of explicit DPA address map affecting
commands like Set Partition with the immediate flag set. Given that the
driver does not support Set Partition with the immediate flag set there
is no current need for update support.
Link: https://www.computeexpresslink.org/spec-landing [1]
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Co-developed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
[djbw: drop in-kernel parsing infra for now, and other minor fixups]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220719205249.566684-7-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
DOE mailbox objects will be needed for various mailbox communications
with each memory device.
Iterate each DOE mailbox capability and create PCI DOE mailbox objects
as found.
It is not anticipated that this is the final resting place for the
iteration of the DOE devices. The support of switch ports will drive
this code into the PCIe side. In this imagined architecture the CXL
port driver would then query into the PCI device for the DOE mailbox
array.
For now creating the mailboxes in the CXL port is good enough for the
endpoints. Later PCIe ports will need to support this to support switch
ports more generically.
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20220719205249.566684-5-ira.weiny@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While there is a need to go from a LIBNVDIMM 'struct nvdimm' to a CXL
'struct cxl_nvdimm', there is no use case to go the other direction.
Likely this is a leftover from an early version of the referenced commit
before it implemented devm for releasing the created nvdimm.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-19-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Unless and until accelerator (type-2) drivers start registering for
CXL.mem mapping services from the CXL subsystem core, initialize idle
HDM decoders to the "expander" type. I.e. the only CXL devices using the
CXL core presently are those implementing the CXL 2.0 Type-3 memory
expander device class code that the cxl_pci driver claims.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-6-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Region creation has need for checking host-bridge connectivity when
adding endpoints to regions. Record, at port creation time, the
host-bridge to provide a useful shortcut from any location in the
topology to the most-significant ancestor.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-4-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In support of testing DPA allocation mechanisms in the CXL core, the
cxl_test environment needs to support establishing and retrieving the
'pmem partition boundary.
Replace the platform_device_add_resources() method for delineating DPA
within an endpoint with an emulated DEV_SIZE amount of partitionable
capacity. Set DEV_SIZE such that an endpoint has enough capacity to
simultaneously participate in 8 distinct regions.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603887411.551046.13234212587991192347.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Dump the device-physical-address map for a CXL expander in /proc/iomem
style format. E.g.:
cat /sys/kernel/debug/cxl/mem1/dpamem
00000000-0fffffff : ram
10000000-1fffffff : pmem
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603885318.551046.8308248564880066726.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for a new cxl debugfs file, move 'cxl' directory
establishment and teardown to the core and let subsequent init routines
reference that setup.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603884654.551046.4962104601691723080.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for region provisioning all device decoders need to be
enumerated since DPA allocations are calculated by summing the
capacities of all decoders in a set. I.e. the programming for decoder[N]
depends on the state of decoder[N-1], so skipping over decoders that
fail to initialize prevents accurate DPA accounting.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
[djbw: reword changelog]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603879664.551046.6863805202478861026.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
To date the per-device-partition DPA range information has only been
used for enumeration purposes. In preparation for allocating regions
from available DPA capacity, convert those ranges into DPA-type resource
trees.
With resources and the new add_dpa_res() helper some open coded end
address calculations and debug prints can be cleaned.
The 'cxlds->pmem_res' and 'cxlds->ram_res' resources are child resources
of the total-device DPA space and they in turn will host DPA allocations
from cxl_endpoint_decoder instances (tracked by cxled->dpa_res).
Cc: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603878921.551046.8127845916514734142.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Interleave granularity and ways have CXL specification defined encodings.
Promote the conversion helpers to a common header, and use them to
replace other open-coded instances.
Force caller to consider the error case of the conversion similarly to
other conversion helpers like kstrto*().
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165603875016.551046.17236943065932132355.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This helper was only used to identify the object type for lockdep
purposes. Now that lockdep support is done with explicit lock classes,
this helper can be dropped.
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603874340.551046.15491766127759244728.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Root decoders are responsible for hosting the available host address
space for endpoints and regions to claim. The tracking of that available
capacity can be done in iomem_resource directly. As a result, root
decoders no longer need to host their own resource tree. The
current ->platform_res attribute was added prematurely.
Otherwise, ->hpa_range fills the role of conveying the current decode
range of the decoder.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603873619.551046.791596854070136223.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for growing a ->dpa_range attribute for endpoint
decoders, rename the current ->decoder_range to the more descriptive
->hpa_range.
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603872867.551046.2170426227407458814.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Save a few characters and use the already initialized local variable.
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603872171.551046.913207574344536475.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The upcoming region provisioning implementation has a need to
dereference port->uport during the port unregister flow. Specifically,
endpoint decoders need to be able to lookup their corresponding memdev
via port->uport.
The existing ->dead flag was added for cases where the core was
committed to tearing down the port, but needed to drop locks before
calling device_unregister(). Reuse that flag to indicate to
delete_endpoint() that it has no "release action" work to do as
unregister_port() will handle it.
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Link: https://lore.kernel.org/r/165603871491.551046.6682199179541194356.stgit@dwillia2-xfh
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The conversion of command sizes to unsigned missed a couple of checks
against variable size payloads during command validation, which made all
variable payload commands unconditionally fail. Add the checks back using
the new CXL_VARIABLE_PAYLOAD scheme.
Fixes: 26f89535a5 ("cxl/mbox: Use type __u32 for mailbox payload sizes")
Cc: <stable@vger.kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Reported-by: Abhi Cs <abhi.cs@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/20220628220109.633564-1-vishal.l.verma@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL specification defines these as little endian.
Fixes: 60b8f17215 ("cxl/pmem: Translate NVDIMM label commands to CXL label commands")
Reported-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/20220225221456.1025635-1-alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Save some characters and directly check decoder type rather than port
type. There's no need to check if the port is an endpoint port since, by
this point, cxl_endpoint_decoder_alloc() has a specified type.
Reviewed by: Adam Manzanares <a.manzanares@samsung.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The device is created, and then there is a check if a driver succesfully
bound to it. In event of failing the bind (e.g. failure in cxl_port_probe())
the device is left registered. When a bus rescan later occurs, fresh
devices are created leading to a multiple device representing the same
underlying hardware. Bad things may follow and at very least we have far too many
devices.
Fix by ensuring autoremove is registered if the device create succeeds,
but doesn't depend on sucessful binding to a driver.
Bug was observed as side effect of incorrect ownership in
[PATCH v9 6/9] cxl/port: Read CDAT table
but will result from any failure to in cxl_port_probe().
Fixes: 8dd2bc0f8e ("cxl/mem: Add the cxl_mem driver")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20220609134519.11668-1-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>